

MINING PROCESS MODEL VARIANTS:
CHALLENGES, TECHNIQUES, EXAMPLES

Chen Li

Ph.D. dissertation committee:

Chairman and Secretary
Prof. Dr. Ir. A.J. Mouthaan University of Twente, The Netherlands

Promotors
Prof. Dr. M. Reichert University of Ulm, Germany
Prof. Dr. R. J. Wieringa University of Twente, The Netherlands

Assistant promotor
Dr. A. Wombacher University of Twente, The Netherlands

Members
Prof. Dr. Ir. W. M. P. van der Aalst Eindhoven University of Technology, The Netherlands
Prof. Dr. P. M. G. Apers University of Twente, The Netherlands
Prof. Dr. Ir. J. P. Katoen University of Twente, the Netherlands
Prof. Dr. M. Weske University of Potsdam, Germany
Prof. Dr. D. R. Ferreira Technical University of Lisbon, Portugal

CTIT Ph.D. Thesis Series No. 10-178
Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE
Enschede, the Netherlands

SIKS Dissertation Series No. 2010-47
The research reported in this thesis has been carried
out under the auspices of SIKS, the Dutch Research
School for Information and Knowledge Systems.

The research reported in this thesis has been
supportedby Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), under
contract No. 612.066.512

Typeset with LATEX. Printed and bound by Ipskamp Drukkers B.V.
Cover design by Yiquan Zhang.
ISSN: 1381-3617
ISBN: 978-90-365-3084-2
http://dx.doi.org/10.3990/1.9789036530842

Copyright © 2010, Chen Li, Enschede, The Netherlands.
All rights reserved.No part of this book may be reproduced or transmitted in any form

or by any means, electronic or mechanical, including photography, recording, or any in-

formation storage and retrieval system, without prior written permission of the author.

MINING PROCESS MODEL VARIANTS:
CHALLENGES, TECHNIQUES, EXAMPLES

DISSERTATION

to obtain
the degree of doctor at the University of Twente,

on the authority of the rector magnificus,
prof. dr. H. Brinksma,

on account of the decision of the graduation committee,
to be publicly defended

on Thursday 11 November, 2010 at 16:45

by

Chen Li

born on April 26, 1982
in Xi’an, Shaanxi, China

This dissertation has been approved by:

Prof. Dr. M. Reichert (promotor)
Prof. Dr. R. J. Wieringa (promotor)
Dr. A. Wombacher (assistant promotor)

For my parents,
who love and support me

in every possible way

Abstract

During the last years a new generation of process-aware information systems has
emerged, which enables process model configurations at buildtime as well as pro-
cess instance changes during runtime. Respective model adaptations result in
large collections of process model variants that are derived from same process
model, but slightly differ in structure. Generally, such model variants are expen-
sive to maintain and configure. In this thesis, we present challenges, scenarios and
algorithms for representing, comparing and mining such process model variants.

We first introduce the notion of process distance, which corresponds to the
minimal number of high-level change operations needed for transforming one
process model into another. In general, we presume that the shorter the average
distance between a reference process model and related process variants is, the
less changes are required for adapting the variants and the less efforts are needed
for (future) process configuration. In this context, we present a method based on
boolean algebra to compute the distance between two process models.

Starting with a collection of related process model variants, the major goal
of this thesis is to discover a reference process model out of which these variants
can be easily configured; i.e., a reference process model with minimal average dis-
tance to the variants. To achieve this goal we present two advanced algorithms
which have their pros & cons, and that are applicable in different scenarios. Our
clustering algorithm does not presume any knowledge about the original reference
process model out of which the process model variants were configured. By only
looking at the process model variants, this algorithm can quickly discover a refer-
ence process model in polynomial time, which allows us to scale up when solving
real-world problems. The clustering algorithm further provides information on
how well each part of the discovered reference model fits to the variants. Our
heuristic algorithm, in turn, can take the original reference model into account
as well. In particular, the user can control to what degree the discovered model
differs from the original one. This way we can avoid spaghetti-like process models
and additionally control how many changes we want to perform on the original
reference model.

We systematically evaluate and compare the two algorithms based on simula-
tions that comprise more than 7000 process models. Simulation results indicate
good performance and make the differences between the two algorithms explicit.
For example, the simulation results indicate that our clustering algorithm runs
significantly faster than our heuristic algorithm. However, our heuristic algorithm
can identify important changes at the beginning of the search and can discover
better results than the clustering algorithm.

We successfully applied the two algorithms to cases from the automotive and
the healthcare domain. During these case studies, the practical relevance and
benefit of our work has become evident once more.

Overall, this Ph.D thesis will contribute to more intelligent information sys-
tems by learning from past adaptations and to an improved management of the
variants by continuously evolving related reference process model.

vii

Samenvatting

De afgelopen jaren is een nieuwe generatie procesbewuste informatiesystemen ver-
schenen die zowel configuraties in de ontwerpfase als veranderingen in de procesin-
stanties mogelijk maakt. De respectievelijke modeladaptaties resulteren in grote
verzamelingen procesmodelvarianten die van hetzelfde procesmodel zijn afgeleid
maar die kleine structuurverschillen hebben. Over het algemeen zijn deze model-
varianten duur in onderhoud en configuratie. In dit proefschrift presenteren wij
uitdagingen, scenario’s en algoritmes voor representatie, vergelijking en mining
van deze procesmodelvarianten.

We introduceren eerst het begrip procesafstand dat correspondeert met het
minimale aantal high-level veranderingsoperaties dat nodig is voor het omzetten
van het ene procesmodel in het andere. In het algemeen nemen we aan dat hoe
kleiner de gemiddelde afstand tussen een referentie procesmodel en een gerela-
teerde procesvariant, hoe minder veranderingen nodig zijn voor het aanpassen van
de varianten en hoe minder inspanning nodig is voor (toekomstige) procesconfigu-
ratie. In deze context presenteren wij een methode die gebaseerd is op Booleaanse
algebra voor het berekenen van de afstand tussen twee procesmodellen.

Startend met een verzameling gerelateerde procesmodelvarianten is het hoofd-
doel van dit proefschrift het vinden van een referentie procesmodel waaruit deze
varianten gemakkelijk kunnen worden geconfigureerd; met andere woorden, een
referentie procesmodel met een minimale afstand tot de varianten. Om dit doel
te bereiken presenteren wij twee geavanceerde algoritmes die beiden voor- en
nadelen hebben, en die toepasbaar zijn in verschillende scenario’s. Ons clusteral-
goritme veronderstelt geen kennis van het oorspronkelijke referentie procesmodel
waaruit de procesmodelvarianten zijn geconfigureerd. Door alleen de procesmod-
elvarianten te beschouwen, is dit algoritme in staat snel een referentiemodel in
polynomiale tijd te vinden, wat ons in staat stelt te schalen wanneer we real-
world problemen oplossen. Daarnaast geeft het clusteralgoritme informatie over
hoe goed ieder deel van het gevonden referentiemodel past met de varianten.
Ons heuristiekalgoritme is echter in staat ook het oorspronkelijke referentiemodel
in aanmerking te nemen. In het bijzonder kan de gebruiker bepalen hoeveel het
gevonden model afwijkt van het origineel. Op deze manier voorkomen we spaghet-
tiachtige procesmodellen en daarnaast houden we het aantal veranderingen dat
we willen toepassen op het originele referentiemodel in de hand.

We evalueren en vergelijken systematisch de twee algoritmes gebaseerd op sim-
ulaties die uit meer dan 7000 procesmodellen bestaan. Simulatieresultaten wijzen
op een goede prestatie en maken de verschillen tussen de twee algoritmes duidelijk.
Bijvoorbeeld, de simulatieresultaten duiden aan dat ons clusteralgoritme signifi-
cant sneller loopt dan ons heuristiekalgoritme. Echter, ons heuristiekalgoritme is
in staat in het begin van het zoekproces belangrijke veranderingen te ontdekken
en het is in staat betere resultaten te vinden dan het clusteralgoritme.

We hebben de twee algoritmes met succes toegepast op casussen uit de auto-
industrie en de gezondheidszorg. Tijdens deze case studies zijn opnieuw de rele-
vantie en voordelen van ons werk duidelijk geworden.

ix

In zijn geheel draagt dit proefschrift bij aan meer intelligente informatiesyste-
men door te leren van vroegere aanpassingen en door een verbeterd management
van de varianten door het continue evolueren van het gerelateerde referentie pro-
cesmodel.

x

Acknowledgement

After four years of struggles, I finally start to write the last part of my thesis.
When all the names are popping up, I surely believe that I can never reach this
far without your great supports.

My first thank goes to my promotor Prof. Manfred Reichert. Dear Manfred,
you are truly a great supervisor! You have taken care of every little detail of
my research, and supported me in every possible way. Although you went back
to Germany at the first year of my Ph.D, I never actually feel that you are
far away. From you, I understand what the German word ”Doktorvater” really
means, and I will be your student all the time. Besides, I would like to thank my
other promotor Prof. Roel Wieringa. Thanks for all the supports and flexibilities
you allowed me in the past years. I really appreciate your efforts to let me not
feel alone in the group. At last, I would like to address my appreciation to my
daily supervisor Dr. Andreas Wombacher. Dear Andreas, whenever we have a
discussion, I always have the feeling that I am a goalkeeper who needs to defend
all the penalty shoots. However, I am also confident that if I can succeed in
defending all your questions, we will have a great paper waiting for us.

Besides my supervisors, I would like to thank all committee members for read-
ing my thesis and providing useful feedbacks. Particularly, I would like to thank
Prof. Wil van der Aalst for your detailed comments and insightful discussions.
Though I need to admit that I have not done all your suggested experiments due
to time constraints, the thesis has already been significantly improved by consid-
ering most of your comments. Thanks very much again for your time and efforts
on improving my thesis.

I would also like to thank my colleagues from IS group for their supports in my
research and daily life. Particularly I would like to thank Lianne for translating
my abstract into Dutch; thank Suse for taking care of all administrative tasks
and speaking Dutch with me; thank André for your feedback and interesting
discussions; thank Virginia for guiding me through the graduation procedures
and thank Zlatko for all the helps of my after-Ph.D career. In addition, I would
like to thank Silja, Emmanuele, Jelena, Siv, Novica, Damiano and the rest of the
group for all our interesting social events, coffee breaks, seminar talks ... which
make our group a great, cozy and friendly place to work in.

Another group of my colleagues are a group of Germans; to be more precise,
a group of Ulmers From University of Ulm. Though I stayed only about two
months there, it was really a great time to be with you guys. I would like to
thank Rüdiger for arranging my stay in Ulm and driving my around the city. I
would also like to thank Vera (of course Oliver as well) for inviting me to your
home, the great dinner and the very nice, but long and exhausting hiking trip ;)
In addition, I would like to thank Matthias, Thao, Andreas, Jens for our dinner
talks, paintball games and the really cold walks after lunch. Dominic and Bela,
it was really nice to have you in my office, and Alena, thanks for your help on
my case study. At last, I want to thank Ralph for your good words during my
interview. Without you, I am not even sure whether I can start as a Ph.D or not.

xi

Here, I would also like to thank two guys I haven’t even met yet. Matthias
Wettstein, thanks very much for your help on my statistic correlation analyses,
which saved me from getting lost in statistical books. And ZHANG Yiquan,
thanks for designing the cover of my thesis, which is so nice that I could never
be able to do something like this. Of course, I need to thank Flavien and WAN
Ying for introducing these nice guys to me and all your coordination works in
between. I own you a great favor/dinner/beer... whatever you prefer :)

In the past two years, I spend a lot of my spare time in the Association of
Chinese Students and Scholars in The Netherlands (ACSSNL). It was a great
experience, during which I have made a lot of friends and learned a lot. Here,
I would like to thank Mr. LUO Ping, Mr. ZHANG Xiaodong and MR. XIA
Lei for your helps and guidances in the past years. YU Miao, MAO Ziqian, LIU
Fangbin, RAO Xiangyu, XIANG Fei, LI Yuan, LI Jiayang and YANG Peng, it
was great to work with you guys and and I believe our friendship will go beyond
just co-workers in a same organization. Also, I would like to thank DING Ning
for saving me for several times when our projects didn’t really go well. LI Rui and
JIU Qianqian, I also had a lot of fun when working with you in several projects.
At last, I would also like to thank CHEN Songyue, ZHANG Xiao and XIE Yanbo
for your helps when organizing events in Enschede.

Now come the friends. I would like to give my great appreciation first to JIN
Mingliang and SHUI Lingling. Thanks for sharing your apartment with me and
preparing the wonderful dinners. Lao JIN, it is a great pleasure to work with you
in the student union, to play badminton with you, and to have holiday together
with you. I also need to say sorry for your efforts on teaching me badminton. In
addition, I would like to thank LI Nan & LIU Jun, ZHONG Zhicheng & HUANG
Yanhui (and your daughter) for your hospitality. Thank ZHAO Yiping, SHENG
Xiaoqin, HONG Liang, ZHANG Yang, YANG Di, SUN Chao for making my life
joyful during my stay at Enschede. Also Joop, you are a great roommate. We
had a lot of fun when living together and let’s keep in touch. Kabir, thanks for
being around and support me in various occasions. Without you, I think I will
not even start my Ph.D here in The Netherlands.

For those who still haven’t seen your names, trust me, my appreciations to
you guys are not discounted. We both need to blame the publisher to who I have
already agreed on the length of my thesis :)

At Last, I need to thank my parents. Without your support, I cannot even
imagine of being who I am now. Your unconditional love is something I cannot
even repay in my whole life. Also, Yuanyuan, knowing you was the greatest thing
ever happened to me. Thanks for your love and support during my Ph.D, and I
am looking forward to our futures.

Chen Li
October, 2010

xii

Contents

I Introduction 1

1 Motivation 3
1.1 Introduction . 3
1.2 Problem Statement . 6
1.3 Research Methodology . 9
1.4 Contribution . 10
1.5 Outline of the Thesis . 11

2 Basic Concepts and Notions 13
2.1 Process-aware Information Systems 13

2.1.1 Process Model . 13
2.1.2 Process Structure Tree . 16
2.1.3 Process Instance . 18
2.1.4 Process Execution Log . 20

2.2 Adaptive Process Management . 21
2.2.1 Dynamic Process Changes 21
2.2.2 Change Patterns . 23

2.3 The ADEPT Process Management Technology 25
2.4 Process Lifecycle . 25
2.5 Process Mining . 27

2.5.1 Overview . 27
2.5.2 Illustrating Example . 28

3 Mining Process Variants: Challenges and Goals 31
3.1 Introduction . 31
3.2 Challenges for Mining Process Variants 31

3.2.1 Complementary Nature of Change and Execution Logs . . . 31
3.2.2 Why Do We Need High-level Change Operations? 32
3.2.3 The Challenge to Derive High-level Changes 34

3.3 Goals for Mining Process Variants 34
3.4 Summary . 37

II Representing, Comparing & Mining Process Variants 39

4 Representing Block-structured Process Models as Order Matri-
ces 41
4.1 Introduction . 41
4.2 Basic Definition of an Order Matrix 42

4.2.1 Nearest Common Ancestor 43
4.2.2 Representing a Process Model as Order Matrix 43

xiii

CONTENTS

4.3 Matrix and Tree: Representing Process Models from Different Per-
spectives . 45
4.3.1 Process Changes Made Easy 45
4.3.2 Identifying Process Blocks 47

4.4 Summary . 48

5 Measuring Process Model Similarity based on High-level Change
Operations 49
5.1 Introduction . 49
5.2 General Description of our Comparison Method 50
5.3 Determining Required Activity Deletions and Insertions 52
5.4 Determining Required Move Operations 52

5.4.1 Optimizing the Conflicts . 54
5.4.2 Distance and Similarity between other Models 56

5.5 Summary . 57

6 Mining Process Variants Using a Clustering Technique 59
6.1 Introduction . 59
6.2 Illustrative Example . 60
6.3 Clustering Approach for Discovering Reference Process Models . . 61

6.3.1 Representing a Collection of Process Variants as Aggre-
gated Order Matrix . 62

6.3.2 Determining the Activities to be Clustered 63
6.3.3 Determining the Internal Order Relations 65
6.3.4 Recomputing the Aggregated Order Matrix 66
6.3.5 Mining Result . 67

6.4 Mining Process Variants with Different Activity Sets 68
6.4.1 Analyzing the Occurrences of Activities 69
6.4.2 Coping with Unclear Order Relations 70
6.4.3 Mining Result when Considering All Activities 71
6.4.4 Setting Different Thresholds for Mining Reference Models . 72
6.4.5 The MinADEPT Algorithm 72

6.5 Evaluating Performance of the MinADEPT Algorithm through
Simulation . 73
6.5.1 Average Weighted Distance 73
6.5.2 Determining the Optimum Threshold Value 74
6.5.3 Simulation Setup . 75
6.5.4 Simulation Results: Influence of Threshold Values 76
6.5.5 Simulation Results: Running Time 78

6.6 Summary . 78

7 Controlling the Evolution of Reference Process Models: A Heuris-
tic Approach 79
7.1 Introduction . 79
7.2 Overview of our Heuristic Search Algorithm 81

xiv

CONTENTS

7.2.1 Running Example . 81
7.2.2 Naive Approaches . 81
7.2.3 Heuristic Search for Process Variant Mining 83

7.3 Fitness Function of our Heuristic Search Algorithm 85
7.3.1 Activity Coverage . 85
7.3.2 Structure Fitting . 86

7.3.2.1 Aggregated Order Matrix 86
7.3.2.2 Importance of the Order Relations 87
7.3.2.3 Structure Fitness of a Candidate Process Models . 88

7.3.3 Fitness Function . 90
7.4 Constructing the Search Tree . 91

7.4.1 The Search Tree . 91
7.4.2 Options for Changing one Particular Activity 93

7.4.2.1 Step 1: Block-enumerating Algorithm 95
7.4.2.2 Step 2: Cluster Inserted Activity with a Block . . 97

7.4.3 Search Result for our Running Example 98
7.5 Simulation Setup . 100

7.5.1 Generating Reference Process Models 101
7.5.2 Parameters for Generating Process Variants 102
7.5.3 Parameter Settings . 103
7.5.4 Simulation Setup . 106

7.6 Simulation Results . 107
7.6.1 Basic Performance Analysis 107

7.6.1.1 Improvement on Average Weighted Distances . . . 107
7.6.1.2 Number of Change Operations 107
7.6.1.3 Execution Time 107

7.6.2 Correlation of Delta-fitness and Delta-distance 108
7.6.3 Correlation Comparison . 110
7.6.4 Monotonicity Test . 111

7.6.4.1 Impact of the Top n% Change Operations 111
7.6.4.2 Monotonically Decreasing Score 112

7.6.5 Influence of the Different Parameters on our Algorithm . . 114
7.6.6 Pruning Threshold Training 116

7.6.6.1 Classification Tree 117
7.6.6.2 Determining Threshold Based on Overall Distance

Gain . 118
7.7 Summary . 119

III Validation & Discussion 121

8 Algorithm Comparison 123
8.1 Introduction . 123
8.2 Proof-of-Concept Prototype . 123
8.3 Comparing the Algorithms for Process Variant Mining 125

xv

CONTENTS

8.3.1 Qualitative Comparison . 126
8.3.2 Quantitative Comparison 128

8.4 Comparison with Existing Process Mining Algorithms 129
8.4.1 Evaluation Criteria . 130
8.4.2 Evaluation Results . 132

8.5 Summary . 134

9 Case Studies 135
9.1 Hospital Case . 135

9.1.1 Description . 135
9.1.2 Results . 138

9.2 Automotive Case . 141
9.2.1 Description . 141
9.2.2 Results . 143

9.3 Cross-Case Analysis . 144
9.4 Summary . 144

IV Conclusion 147

10 Related Work 149
10.1 Process Analysis and Process Mining Approaches 149

10.1.1 Process Changes and Process Variant Management 149
10.1.2 Process Similarity . 152
10.1.3 Process Mining . 153
10.1.4 Conformance & Compliance Checking 155
10.1.5 Process Change Mining . 155
10.1.6 Reference Modeling . 156

10.2 Data Analysis and Data Mining Approaches 157
10.2.1 Distance Measurement . 157
10.2.2 Graph-based Analysis and Mining Approaches 157
10.2.3 Clustering and Heuristic Algorithms in General 158

10.3 Web Services . 159
10.3.1 Service Composition . 159
10.3.2 Service Monitoring . 161

10.4 Algorithm Evaluation Approaches 161
10.4.1 Simulations . 161
10.4.2 Algorithm Evaluation Criteria 162

10.5 Summary . 162

11 Summary 163

A Appendix 167
A.1 Properties of Block-structured Process Model 167
A.2 Proof of Theorem 1 . 168

xvi

CONTENTS

Bibliography 171

xvii

Part I

Introduction

1

1
Motivation

1.1 Introduction

In today’s dynamic business world success of an enterprise increasingly depends
on its ability to react to changes in its environment in a quick, flexible and cost-
effective way [128, 96, 38]. However, current off-the-shelf enterprise software (e.g.,
Enterprise Resource Planning systems, Hospital Information Systems, or Supply
Chain Management Systems) has not fully met these needs yet [131]. Instead, it
is deployed in different companies, domains, and countries, and therefore tends
to be too generic and rigid. Usually, the introduction of enterprise software
entails the problem of aligning business processes and IT [169, 76]. This causes
huge customization efforts on the part software buyers that exceed the price for
software licenses by factor five to ten [38, 76]. Software vendors, in turn, make
endeavors to close this alignment gap [169, 186], and major progress has been
achieved by shifting from function- to process-centered software design [196, 198,
225].

Along this trend a variety of process and service support paradigms (e.g., ser-
vice orchestration [132], service choreography [132], and adaptive service [141, 28])
as well as corresponding specification languages (e.g., WS-BPEL [21], BPMN [22]
and WSDL [233]) have emerged. Process-aware information systems (PAISs) of-
fer promising perspectives in this respect, and a growing interest in aligning in-
formation systems in a process-oriented way can be observed [225]. In particular,
PAISs allow to separate process logic and application code. This separation of
concerns, in turn, increases maintainability and reduces cost of change [129, 213].
PAISs have become an integral part of enterprise computing and are used to
support business processes at an operational level [225].

With the increasing adoption of PAISs, large process model repositories have
emerged. Typically, the models in such repositories are re-aligned to real-world
events and demands through adaptation on a day-to-day basis. In large com-
panies, such process repositories can easily contain several thousands of process
models [164]. Such sheer numbers give rise to several quality issues. Over time
new process models emerge, existing ones need to be adapted to changing re-
quirements, and new process model variants are created to align processes to a

3

CHAPTER 1. MOTIVATION

particular context (e.g., country or product-specific regulations).
To ease the maintenance and evolution of such large process repositories,

different approaches for flexible and adaptive processes exist [141, 154, 165]. Be-
sides their use for behavior-preserving model refactorings [210], structural process
adaptations (i.e., to add, delete or move process steps) are needed for customizing
a reference process model to a particular context at buildtime (- such a reference
model embodies the basic goal or general idea of a certain process type or can
be looked as a reference for various purposes [163, 165]) [66, 165]. Furthermore,
structural model adaptations may become necessary for adapting single process
instances during runtime in order to deal with exceptional situations and chang-
ing needs [141, 211]. Altogether, the ability to effectively deal with process change
has been identified as one of the most fundamental success factors for any PAISs
[124, 133, 215, 211, 213, 209].

As example consider medical guidelines that exist for treating patients with
a particular disease [96]. First, such process-centered guideline needs to be cus-
tomized to fit to the particular healthcare environment in which it is applied.
Second, additional adaptations might become necessary on-demand when ap-
plying it to a particular patient and his case [96]. Generally, in domains like
healthcare [96, 4, 137] or automotive engineering [122, 127], no user would accept
a PAIS if rigidity came with it [150].

Overall, the discussed ability to adapt process models at different levels, will
lead to collections of process model variants (i.e., model configurations [69]) and to
large process repositories. Thereby, this thesis will consider such process variant
collections at buildtime and process variant collection that results from runtime
adaptation.

a) S: original process model b) S’: a process model variant
Change AND-Split AND-JoinAdmitted Register

Receive treatment PayAdmitted Register Receive treatment Pay
Figure 1.1: Original process model S and derived process variant S′

Fig. 1.1 depicts a very simple example. The left hand side shows a high-
level view on a patient treatment process as it is normally executed: a patient
is admitted to a hospital, where he first registers, then receives treatment,
and finally pays. In emergency situations, however, it might become necessary
to deviate from this model, e.g., by first starting treatment of the patient and
allowing him to register later during treatment. To capture this behavior in
the model of the respective process instance, we need to move activity receive
treatment from its current position to a position parallel to activity register.
This leads to an instance-specific process model variant S′ as shown on the right

4

1.1. INTRODUCTION

hand side of Fig. 1.1.

Generally, a large number of process model variants (process variants for
short) derived from the same original process model might exist [107, 217, 128,
164]. For example, in the healthcare domain, we identified more than 90 process
variants of a particular medical order handling procedure (see Chapter 9).

The problem looks even more challenging when additionally considering the
customization and configuration at the different levels described above. Fig. 1.2
visualizes this problem: a domain-specific process reference model is configured
into site-specific reference models for different customers. These site-specific ref-
erence models, in turn, may be further customized at runtime in order to cope
with case- and instance specific requirements (cf. Fig 1.1) [69]. It is not difficult
to imagine the complexity to be mastered if a large and deep tree of such process
variants is built up in a process repository [107].

…

S: Reference process model
customization & adaptation

Standard process for customer A
Instantiation & runtime customization

Standard process for customer B Standard process for customer C
…Process instance (based on S2) Process instance (based on S2) Process instance (based on S2)

S1: S2: S3:
I1: I2: I3: Ins

tan
ce

-
sp

ec
ific

Do
ma

in-
sp

ec
ific

Sit
e-

sp
ec

ific

Activity Control flow Inserted/modified Activity Completed Activity Running Activity Process instance level
Figure 1.2: Domain-, site- and instance-specific process configurations

In most approaches supporting the adaptation and configuration of process
models, each resulting process variant has to be maintained by its own [66], and
even simple changes within a domain or organization (e.g. due to new laws or re-
engineering efforts) might require manual re-editing of a large number of (logically
related) process variants [215, 211]. Over time this leads to a degeneration and
divergence of the respective process models [131], which aggravates maintenance
significantly and which makes expensive refactorings indispensable.

5

CHAPTER 1. MOTIVATION

1.2 Problem Statement

Though considerable efforts have been made to ease process configuration and
process adaptation [217, 66, 141, 165], a notable research gap exists concerning
quality assurance in large process repositories, and process variants collections
respectively. Most existing approaches have not utilized information about pro-
cess variant collections in the process repository yet [213]. Fig. 1.3 describes
the overall goal of our research. We want to learn from related process variants
in order to discover a (new) reference process model covering the given variant
collection best. By adopting the discovered model in the PAIS, need for future
process adaptations and costs for change will decrease. Generally, finding such
reference model is by far not trivial when considering control flow patterns like
sequence, parallel branching, conditional branching, and loops.

Fig. 1.3 further differentiates between two scenarios. In the first scenario
there is only a collection of related process variants, but no knowledge about the
original reference process model these variants were derived from. Here we want
to discover a reference process model by ”merging” common or frequent parts of
these variants into one model. When adopting the discovered model as reference
process model, we expect future process configurations to be reduced.

In the second scenario the process variants have been derived by configuring
a known reference process model. When mining the new reference process model
without considering the current one, however, we might be confronted with signif-
icant structural differences between old and new reference model. In most cases,
”dramatic” changes of the current reference process model might be not preferred
due to high implementation costs or for social reasons [71, 161, 173]. Therefore,
process engineers should have the flexibility to control to what degree they want
to maximally modify the original reference model such that the resulting model
fits better to the given variant collection. Consequently, closeness of the new

Original reference process model Scustomization
& adaptation

mining &
learning

mining &
learning

Process Repository

Scenario 2: Original reference
process model known

Discovered reference process model S’

Discovered reference process model S’

Scenario 1: No original
reference process model

available Process variant S1 Process variant S2
Process variant S5
Process variant S3 Process variant S4

Process variant Sn…
Process

improvement

Goal: Discover a (new) reference process model which requires less configuration efforts

Figure 1.3: Different scenarios for discovering reference process models

6

1.2. PROBLEM STATEMENT

reference model to the old one and closeness of this model to the variant models
act as ”counterforces”. Ideally, the described flexibility also enables designers to
consider only the most relevant configurations and adaptations respectively when
evolving the reference process model.

This thesis deals with a number of research questions regarding the above
mentioned scenarios. Basically, we distinguish between knowledge problems (KP)
and design problems (DP) [227].1 These research questions guide the research
presented in this thesis:

� Research Question 1 (KP) What are fundamental challenges in min-
ing process model variants? Are existing mining techniques suitable for
realizing the goal of reducing process configuration efforts?

� Research Question 2 (DP) How shall we measure the distance between
two process models such that this measure reflects minimal efforts for pro-
cess model configurations?

� Research Question 3 (DP) Given a collection of process variants, how
can we discover a reference process model in such a way that average dis-
tance between it and the process variants becomes minimal?

� Research Question 4 (DP) Given the original reference process model
and a collection of related process variants derived from it, how can we
derive a new reference process model that fits ”better” to these variants?
And how can we control the evolution of the reference process model in this
context, i.e., how can we enable process engineers to control to what degree
the new reference model may ”differ” from the original one and how ”close”
it is to the given collection of process variants.

� Research Question 5 (KP) What are characteristic properties of the so-
lution approaches we propose for supporting the different scenarios? Under
which circumstances is the one approach better suited than the other?

When considering Research Question 1, we first try to identify the goals,
scientific challenges and technical issues that emerge when mining process model
variants. Based on this, we evaluate whether or not current approaches can help
us in achieving the defined goals. Regarding Research Question 2 we measure
closeness (or distance) between a reference process model and a process variant
in terms of the number of high-level change operations (e.g., to insert, delete
or move activities) needed to transform the reference process model into the

1A knowledge problem is a difference between what we know about the world and what we
would like to know [226]. Knowledge problems can be solved by asking others, by searching
the literature, or by doing research. Knowledge problems have stakeholders, namely the people
who would like to acquire the desired knowledge. Research problems typically are knowledge
problems in which we search for true propositions. Design problems, in turn, are engineering
problems, in which we search for an improvement of the world with respect to some goals. The
evaluation criteria for answers to both kinds of problems are quite different: truth in the case
of research problems, goal achievement in case of design problems.

7

CHAPTER 1. MOTIVATION

Q1.(KP): Which scientific challenges need to be handled when mining process model variants? KP: What are the goals for mining process variants? KP: Which approaches exist for mining process variants? KP: Are existing approaches applicable to our research? If not:DP: Explain why current approaches cannot achieve our goal.DP: Derive additional requirements. KP: Derive scientific challenges for mining process variants.Q2.(DP): How to measure the distance between two process models?DP: How to measure efforts for process model configurations and process model adaptations respectively? KP: Which approaches for measuring the distance between process models exist?KP: Are existing distance metrics applicable in the context of our research? If not:DP: Derive evaluation criteria. DP: Design algorithms for measuring process model distances.Q3.(DP): How to discover a reference process model by mining a collection of process variants? KP: Which approaches for mining process variants exist?A: Study existing approaches for process/data mining, and process change management.KP: What are fundamental requirements for mining process variants?DP: How to mine process variants?DP: How to represent a collection of process models?A: Design algorithm for mining process variants.A: Evaluate proposed algorithm based on simulations.KP: Can the algorithm achieve the research goal? If not: improve the algorithm Q4.(DP): How to improve an existing reference process model by performing a sequence of changes on it? KP: What are key advantages if we consider the original reference process model in our mining algorithm? remaining sub-research questions are similar to Q3.Q5.(KP): What are key properties of our proposed algorithms? KP: What are key properties of our proposed algorithms?A: Identify relevant properties.A: Test algorithm properties through simulations. KP: What are the pros & cons of our algorithms?A: Identify comparison criteria based on the properties of our algorithms. A: Compare our algorithms.A: Compare our algorithms with traditional process mining algorithms. DP: Design comparison criteria. A: Compare algorithms based on cases.KP: Are our algorithms applicable to practical cases? A: Collect data from case studies.A: Apply our algorithms in the case studies.KP: Are our algorithm useful in the given context?A: Evaluate case study results. A: Collect feedback from experts. time

Explanation:KP = Knowledge problemA = Action / Research activitiesDP = Design problem

Figure 1.4: Research Plan

8

1.3. RESEARCH METHODOLOGY

respective variant. Clearly, the shorter this distance is the less the efforts for
configuring this variant will be.

Research Question 3 relates to the challenges discussed in connection with
Scenario 1; i.e., we want to ”merge” the most common and relevant parts of
the different variants together in a reference process model. By adopting this
reference process model in the PAIS, we can expect less configuration effort in
future.

We try to handle the challenges set out by Scenario 2 by answering Research
Question 4. Here, we discover a new reference model by constructing a sequence
of change operations to be applied the original one. Thereby, process engineers
have the flexibility to control the similarity between the original reference model
and the newly discovered one; i.e., to specify how many change operations shall
be maximally applied to the old reference model when discovering the new one.
As major benefits, we can control the efforts for updating the reference process
model, and thus we can avoid Spaghetti-like model structures, which is a common
challenge in the field of process mining [168, 39]. Clearly, the most relevant
changes (i.e., the changes which significantly contribute to reduce the average
distance between the newly discovered reference model and the variants) should
be considered first and the less relevant ones last.

By working on Research Question 5, we finally evaluate and compare the prop-
erties of the solution approaches we propose for the support of the two scenarios.
For example, we can measure execution time, quality parameters (e.g., distance
reduction), scalability, and statistical properties of our solution approaches under
different circumstances. The evaluation and comparison are performed based on
simulations and studies of real-world cases.

Corresponding sub-research questions and a research plan are given in Fig.
1.4. Section 1.5 relates each research question to one of the following chapters.

1.3 Research Methodology

Like most software research & development projects [88, 13], our research com-
prises four phases: (1) problem analysis, (2) solution Design, (3) implementation
and (4) evaluation. The research steps and the actions applied in each step are
depicted in Fig. 1.5.

We start with a comprehensive literature study in Phase 1. Thereby, we focus
on topics like process-aware information systems, (dynamic) process changes,
process configuration, and process mining. Particularly, we are interested in
techniques for managing and mining process model variants.

Based on the results of our literature study, we elicit requirements for mining
process variants and start to design solutions (Phase 2). In this phase, we study
literature relating to data mining, process mining, machine learning and reason-
ing techniques. Inspired by respective approaches, we design our algorithms for
mining process variant collections.

The developed algorithms are implemented as stand-alone tool based on Java

9

CHAPTER 1. MOTIVATION

Algorithm design for mining process model variants
Problem
analysis

Solution
design Implementation EvaluationSimulations:1. Monte Carlo analysis 2. Statistical analysis Case studies: 1. automotive 2. healthcare time

Literature studies: 1. PAIS / Process change 2. Process analysis / mining 1 2 3 4
Tool support: 1. ADEPT 2. ProM

Languages: 1. Java 2. XML
Exploratory literature studies: 1. Data / process mining 2. Machine learning / reasoning

Analytical tool support: 1. SPSS; 2. ProM 3. Weka

Legend: Research steps Research actions1
Figure 1.5: Research Methodology

(Phase 3). This tool is connected (via XML) with the ADEPT process manage-
ment system [141] and the ProM process mining tool [201], which constitute two
of the most popular tools for enabling (dynamic) process changes and process
mining respectively.

The implemented algorithms are evaluated based on simulations and real-
world cases (Phase 4). In this phase, we apply our algorithms in two case studies
from automotive and healthcare domain. In addition, we perform various sta-
tistical analyses (mainly based on SPSS [179]) and data analyses (mainly based
on Weka [228]) to evaluate the performance of our algorithms. Note that our
research method constitutes an iterative approach. For example, the insights we
obtain from our simulations and case studies contribute to further improvement
of our algorithms, which trigger a new iteration of the four steps.

1.4 Contribution

In this thesis we develop a heuristic as well as a clustering algorithm for learning
from previous process model adaptations and for discovering a reference model
out of which the relating variants can be configured with minimum efforts. Each
algorithm has its pros and cons. We systematically evaluate and compare the
two algorithms through simulation and by applying them to real-world scenarios.
In detail, the contributions of this thesis can be summarized as follows:

� We identify the research goals, scientific challenges and technical issues that
emerge when mining process model variants. Through qualitative as well
as quantitative analyses, we explain why current approaches cannot help us
achieving the identified goals.

10

1.5. OUTLINE OF THE THESIS

� We introduce the notion of order matrix for representing block-structured
process models. An order matrix captures (transitive) order relations be-
tween pairs of process activities. Using order matrices, we can facilitate
dynamic process changes and perform advanced process model analyses as
required in the context of our mining approach.

� We present a method using Boolean algebra optimization to measure the
distance between two process models. In this context, distance measures the
minimal number of high-level change operations needed to transform one
model into another. Thus it reflects overall efforts for process configuration.

� We design a clustering algorithm which can discover a reference process
model by mining a collection of process variants. By adopting this reference
process model within the PAIS, we expect lower process configuration efforts
in future.

� We design a heuristic algorithm which can improve an existing reference
process model by mining a process variant collection. When compared with
our clustering algorithm, the heuristic algorithm can additionally control
the difference between the discovered reference model and the original one;
i.e., it can differentiate between important changes and trivial ones.

� We additionally evaluate these two algorithms based on simulations and
case studies. Overall, simulation results indicate good performance of our
algorithms, and case study results underline the high practical relevance of
our work.

1.5 Outline of the Thesis

The remainder of this thesis is divided into four parts - introduction, solution,
validation and summary. The outline of the thesis is depicted in Fig. 1.6.

I. Introduction

II. Solution &
 Simulation

III. Validation

IV. Discussion
 & Summary

Motivation (Chapter 1) Basic concept (Chapter 2) Challenges & goals(Chapter 3)Order matrix (Chapter 4) Distance measurement (Chapter 5)Implementation & comparison (Chapter 8) Case studies (Chapter 9)Related work (Chapter 10) Summary & outlook (Chapter 11)
Clustering approach (Chapter 6) Heuristic approach (Chapter 7)

Figure 1.6: Outline of the Thesis

11

CHAPTER 1. MOTIVATION

Part I comprises introductory chapters. More specifically, Chapter 1 first
motivates the need for mining process variants and Chapter 2 introduces basic
concepts needed for understanding this thesis. Chapter 3 then discusses goals and
scientific challenges for mining process variants and shortly explains why current
process mining techniques are unable to achieve the defined goal.

Part II provides novel techniques for representing, comparing and mining
process variants. Chapter 4 first introduces the notion of order matrix which
represents a block-structured process model by capturing the transitive order re-
lations for pairs of activities. Chapter 5 then introduces an algorithm to evaluate
the distance between two block-structured process models. In this context, we
define distance as minimal number of high-level change operations (e.g., delete,
insert, move activities) needed to transform one model into another. This, in
turn, can reflect the efforts for process model configuration. Chapters 6 and 7
introduce a clustering and a heuristic algorithm respectively, which contribute
to achieve the goals of this thesis for different settings, i.e., they can discover a
reference process model out of which the process variants can be configured with
lowest efforts. In addition, we systematically test the properties of our algorithms
by comprehensive simulations based on several thousand process models.

Part III of this thesis evaluates the algorithms we develop in Part II. In
Chapter 8, we first present a high-level architecture of our implemented tools
and compare the developed algorithms qualitatively and quantitatively. Chapter
9 then presents two case studies where we successfully apply our algorithms to
cases from the automotive industry and the healthcare domain.

Finally, Part IV discusses related work in Chapter 10 and summarizes main
contributions of the thesis in Chapter 11. Chapter 11 also provides an outlook
on future research directions.

Fig. 1.7 illustrates which research questions are addressed in which chapters.
Since Chapter 2 introduces basic concepts, it relates to all research questions.

Research question 2 Chapter 1 Chapter 2 Chapter 4Chapter 3 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11Research question 1Research question 3Research question 4Research question 5Re
se

ar
ch

Qu

es
tio

ns

Chapters

Figure 1.7: Research questions along the different chapters

12

2
Basic Concepts and Notions

This chapter introduces basic concepts needed for understanding this thesis. We
first introduce the notion of Process-aware information system (PAIS) and related
concepts in Section 2.1. Then we discuss basic concepts of adaptive processes in
Section 2.2. In Section 2.3 we introduce the ADEPT process management tech-
nology, which provides advanced features for enabling correct process adaptations
at different levels. ADEPT further addresses a broad spectrum of topics related
to business process management (e.g., process modeling, process compliance, and
process schema evolution). We present the full process lifecycle in a PAIS in Sec-
tion 2.4. Finally, we briefly introduce process mining techniques in Section 2.5.

2.1 Process-aware Information Systems

This section introduces basic concepts of a PAIS: process model, process structure
tree, process instance and execution log.

2.1.1 Process Model

A process management system (PrMS) provides generic process support functions
and allows for separating process logic and application code. For this purpose, the
process logic has to be explicitly defined based on the modeling patterns provided
by the underlying a process meta model. At runtime the PrMS then orchestrates
the processes according to the defined logic. For each business process to be
supported, a process type, represented by a process model S, has to be defined.

In this thesis, a single process model is represented as a directed graph, which
comprises a set of nodes - either representing process steps (i.e., activities) or con-
trol connectors (e.g, And-/Xor-Split) – and a set of control edges between them.
The latter specify precedence as well as loop backward relations. Furthermore, we
presume that process models are block-structured (see below).

Fig. 2.1 depicts an example of such a block-structured process model. Nodes
are represented as rectangles while precedence and loop backwards relations are
expressed as directed edges of different type. Each process model contains a

13

CHAPTER 2. BASIC CONCEPTS AND NOTIONS

unique start and a unique end node.1 For control flow modeling the following
patterns are available: Sequence, AND-split, AND-join, XOR-split, XOR-join,
and Loop [193]. These patterns constitute the core of any process specification
language and cover most of the process models we can find in practice [236, 113].
Further, they can be easily mapped to other process execution languages like WS-
BPEL (Web Service Business Process Execution Language) as well as to formal
languages like Petri Nets [21, 196]. Based on these patterns we are also able
to compose more complex process structures if required (e.g., in principle, an
OR-split can be mapped to AND- and XOR-splits [117]). Finally, by only using
these basic process patterns, we obtain better understandable and less erroneous
models [116].

loop parallel branching
conditional branching

sequence sequenceProcess model
A B

C
D

F
E

G

I J

H

Start End AndJoinXorJoinAndSplitXorSplit
Precedence Loop
StartFlow EndFlowStart EndNode types:

Edge types:
G (Labeled) activityEndLoop StartLoop

Figure 2.1: Block-structured process model

Each node n of a process model S may have a label l(n). Such labeled nodes
constitute the activities of S (e.g., activities A and B in Fig. 2.1). However, not
all nodes must be labeled. We denote nodes without associated label as silent
activities. These have no associated actions and only exist for control flow purpose
(e.g., the StartLoop and EndLoop nodes in Fig. 2.1) [100]. In the context our
research, for labeled activities we assume that their label is unique. Regarding
our example from Fig. 2.1, S contains 10 normal activities and 4 silent ones.

As aforementioned, we further presume that a process model S is block-
structured (cf. Fig. 2.1); i.e., activities, sequences, branchings, and loops con-
stitute blocks with unique start and end nodes (or the start and end of such
block become clear from the model)2 [140, 148, 204, 84]. These blocks may
be nested, but must not overlap; i.e., their nesting must be regular (cf. Ap-
pendix A.1 for a formal description of the properties of block-structured models)
[141, 84, 140, 204]. Generally a block can be a single activity, a sequence, a
parallel branching, a conditional branching, or S itself (cf. Appendix A.1). In

1For the sake of readability, we omit the start and end node of a process model if its start
and end are clear. This applies to most process models in later Chapters.

2For example, in Fig. 2.1 the conditional branching block that comprises activities C,D,E

and F constitutes a block.

14

2.1. PROCESS-AWARE INFORMATION SYSTEMS

Fig. 2.1, the grey areas show selected blocks of process model S, and the differ-
ent grey levels indicate their nesting. In principle, we can consider a block itself
as a block-structured process model. In the following, we represent each block
as set of activities since the block-structure itself can be derived from the given
process model S; e.g., block {G,H} corresponds to the sequence structure in S.
Similarly, {A}, {C,D,E,F}, {B,C,D,E,F,G,H,I}, and {A,B,C,D,E,F,G,H,I,J}
describe selected blocks contained in S (cf. Fig. 2.1).3

The concept of block-structuring has been known from block-structured pro-
gramming languages for a long time [45], and can be (partly) found in process
specification language like WS-BPEL and XLANG as well. Furthermore, process
management systems like AristaFlow BPM Suite [37] and CAKE2 [119] emerged,
which have been applied to a variety of processes from different domains and
whose process modeling language is block-structured. In the context of our frame-
work, the block structuring of the process meta model was motivated by three
aspects:4

� First, when compared with non-block-structured process models, block-
structured models are easier understandable for users and have less chances
of containing errors [151, 114, 115, 116, 32]. This will be particularly im-
portant if users need to adapt process models during run-time.

� Second, block-structuring makes it possible to restrict the area in the graph
to be analyzed in the context of changes. This, in turn, allows for quick
abstractions and speeds up required analyses [141].

� Third, block-structure simplifies structural adaptations of the process schema
and enables a variety of high-level change patterns [211].

If a process model is not block-structured, in many cases we can transform
it into a block-structured representation [204, 116, 84, 140]. For example, we
analyzed 214 process models from different domains, which were expressed in
different languages (e.g., Event Process Chains, UML Activity Diagrams). More
than 95% of them were block-structured or could be transformed into a block-
structured representation [182, 135]. Despite the fact that there exist process
models which are not block-structured and which cannot be transformed into
block-structure, we consider our mining algorithms for block-structured process
variant models as being highly relevant. Formally, we define block-structured
process model as follows:

Definition 1 (Block-structured Process Model) A tuple S = (A,E, AT, ET, l)
is called a block-structured process model if the following holds:

3Here, {B,C,D,E,F,G,H,I} only refers to the parallel branching. It will become clear in
Chapter 4 how we represent the loop block.

4This research has been conducted in the context of the ADEPT framework (cf. Section
2.3). Note that the core ADEPT meta model also contains elements that increase expressiveness
when compared to pure block-structured models. Examples include synchronization and failure
edges (see [141] for details).

15

CHAPTER 2. BASIC CONCEPTS AND NOTIONS

� A is a set of nodes and AT assigns to each node a ∈ A a node type

AT (a) ∈ {StartFlow, EndFlow, Normal, AndSplit, AndJoin, XorSplit,

XorJoin, StartLoop, EndLoop}
� E ⊆ A×A is a set of directed edges and ET assigns to each edge e ∈ E

an edge type ET (e) ∈ {Precedence,Loop}. Further, n ≺ m :⇔ n directly
or indirectly precedes m when only considering precedence edges.

� Let L be a set of activity labels. l : A → L is a partial labeling function

which assigns a label l(a) ∈ L to a node a ∈ A.
� S has the block-structure properties as described above (for a formal and

precise description see Appendix A.1).

2.1.2 Process Structure Tree

Transforming a block-structured model into a tree representation has its roots
in structured programming and compiler theory [3]. Such transformation can
be applied, for example, when analyzing block-structured languages like XML or
WS-BPEL. In the context of this thesis, we apply the approach presented in [204],
which can transform a block-structured process model S into a refined process
structure tree in linear time. Such refined process structure tree constitutes a
unique representation of a block-structured process model. In the following, we
denote it as process structure tree for short.

Definition 2 (Process Structure Tree) A tuple T = (N, C,CT, E, l) is called
a process structure tree if the following holds:

� N is a set of nodes.
� C is a set of connectors and CT assigns to each connector c ∈ C a
connector type CT (c) ∈ {Seq, AND, XOR, Loop}.

� E ⊆ (C × C)
⋃

(C ×N) is a set of directed edges.
� Let L be a set of activity labels, l : N → L is a partial labeling function

which assigns a label l(n) to a node n ∈ N .
A process structure tree consists of a set of nodes, a set of connectors, and a set

of directed edges linking them. The labeling function l assigns labels to nodes in a
similar way as described in Definition 1. Fig. 2.2 shows a block-structured process
model S and its corresponding process structure tree T . In such a tree, nodes
(represented as rectangles) correspond to activities while connectors (represented
as ellipses) represent their relations based on process patterns like Sequence,
AND-block, XOR-block, and Loop [193]. The precedence relations (expressed by
connector Seq) are parsed from left to right; e.g., activity A precedes the Loop
block (i.e., connector Loop1 and all its successors) in the corresponding process
model S since A is on the left side of connector Loop1. Note that when representing
a loop structure within a process structure tree T , we introduce a silent activity
τ as direct successor of the respective Loop connector (cf. Fig. 2.2b). This
way we ensure that any connector in T always has at least two successors.5 In

5Connectors of type Seq, AND and XOR represent a relation between its successors and require
at least two successors. In case of ”empty” branches in an XOR branching, again silent nodes

16

2.1. PROCESS-AWARE INFORMATION SYSTEMS

Process structure tree T

XOR1
Loop1Seq1

AND1
A J

C
B

FSeq4G
I τ

Seq3 H D E
Seq2

Block structured process model S

loop parallel branching
conditional branching

sequence sequenceProcess model
A B

C
D

F
E

G

I J

H

Start End
a) b)

Figure 2.2: Process Model S and its corresponding process structure tree T

a process structure tree, nodes correspond to leaves, while connectors are non-
leaves. Further, a process structure tree has a unique root node without incoming
edges.6

When comparing a block-structured process model and its corresponding pro-
cess tree, the main advantage of the latter is that a process structure tree contains
fewer unnecessary silent activities, i.e., it provides a clear picture of the process
model’s structure and the relations between the activities. In the following chap-
ters of the thesis, activities refer to the nodes of a process structure tree; i.e., an
activity is either a labeled node or an un-labeled node, which exist to represent
the loop structure in its corresponding process structure.

Definition 3 (Ancestor and Subtree) Let T = (N, C, CT, E, l) be a process
structure tree. Let a, b ∈ N

⋃
C be two elements of T . Then:

1. a is an ancestor of b (a ≺ b) : ⇔ There exists a path from a to b.
2. AT (a) = {b|(b ∈ N

⋃
C)∧ (a ≺ b)} is denoted as descendant set of element

a ∈ N
⋃

C.
3. A subtree T ′ of tree T is a process structure tree T ′ = (N ′, C ′, CT ′, E′, l ′)

with the following properties:

� (N ′ ⊆ N)∧ (C ′ ⊆ C)
� ∃a ∈ N ′⋃ C ′ : N ′⋃ C ′ = AT (a)

⋃{a}; i.e., a is the root element of
T ′

� E′ = {(a, b)|a, b ∈ N ′⋃ C ′ ∧ (a, b) ∈ E}
may be introduced for representing them.

6A block-structured process model can also be expressed by a shuffle regular expression
[47]. For example, the process model S described in Fig. 2.2a can be expressed as a shuffle
regular expression A.(B.((G.H)||(C.(D+E).F)).I)∗.J as well. In this expression ”+” is choice,
”.” represents a concatenation, ” ∗ ” denotes a Kleene star, and ”||” is the shuffle operator in
automata theory [77].

17

CHAPTER 2. BASIC CONCEPTS AND NOTIONS

A sub-tree T ′ = (N ′, C ′, CT ′, E′, l ′) of process structure tree T = (N, C,CT, E, l)
is a connected fragment of T which contains a unique root element a ∈ N

⋃
C and

all its descendants. As example consider Fig. 2.2b: Activities D and E, their con-
nector XOR1, and the edges linking them can form a subtree of T . Since the process
model S represented by T is block-structured, any subtree of T corresponds to a
block of S; i.e., a process structure tree and its hierarchical decomposition into
subtrees correspond to a block-structured process model and its hierarchical de-
composition into blocks [204]. Given an element e ∈ N

⋃
C in a process structure

tree and taking Def. 3, we are able to construct a subtree T (e) by identifying its
descendant set AT (e) and the edges linking them. In our example, the subtree
of connector Seq4 is a tree containing nodes C,D,E and F, connectors Seq4 and
XOR1, and the edges connecting these elements.

2.1.3 Process Instance

A process instance ”represents a concrete case in the operational business of a
company . . . Each process model acts as a blueprint of a set of process instances”
[225]. For one particular process model, multiple instances may be created. Each
of them represents a particular business case. Logically, such an instance corre-
sponds to a process model being annotated with state information. Regarding
block-structured process models, for example, a process model instance (process
instance for short) is defined ”by the current marking of its nodes and edges as
well as its execution history” [141]. Fig. 2.3 shows a process model instance
which is based on the process model from Fig. 2.1. Here, activities A,B,C and
G are completed. Activity D is still running, while activity E was skipped since
it is contained in a non-selected branch. Finally, activity H is activated, i.e., this
activity is ready for execution.

loop parallel branching

conditional branching

sequence
sequence

workflow
A B

C
D

F
E

G

I J

H

Start End� � � �

4
�

Completed activity

� 4

Skipped activity Activated activity Running activity
Figure 2.3: Process model instance

In this thesis we do not formally describe the operational semantics for block-

18

2.1. PROCESS-AWARE INFORMATION SYSTEMS

structured process models, but refer to [141, 152, 140] instead. As the process pat-
terns used in block-structured process model can be easily mapped to WS-BPEL
[21] or Petri Nets [193, 196], we could also describe the operational semantics of
block-structured process models based on these languages. For example, Fig. 2.4
shows the corresponding7 Petri Net of the block-structured process model from
Fig. 2.1. Generally, the enactment of activities and the execution semantics of a
process model can be described by the firing rules of Petri Net [126]. In principle,
we can consider block-structured process models as a subclass of Workflow Nets
[196], for which the net models follow the discussed structuring constraints.

A B

C

D

E

F

G H

I J

Figure 2.4: Petri Net of process model in Fig. 2.1

Similar to a Workflow Net, we consider a block-structured process model S
as being sound if and only if the following properties hold:

1. Proper completion (i.e., when the EndFlow node becomes enabled, all other
nodes cannot be activated anymore)

2. Absence of deadlocks (i.e., as long as the EndFlow node has not been en-
abled, there is no execution situation in which no node is activated)

3. Absence of dead tasks (i.e., there exists no node, which can be never acti-
vated)

For a formal description of these properties, we refer to [196, 187, 140]. Note
that the soundness of a block-structured process model has the same requirements
as the soundness of its corresponding Petri Net [126, 187]. In the following, we
consider soundness as fundamental requirement any process model should satisfy
as prerequisite for its proper execution and further analyses [187, 141]. How
to verify the soundness of a process model, however, is out of the scope of this
thesis (cf. [140, 141, 152, 187, 196] for respective techniques, which often employ
reachability analyses as known from Petri Nets). In the following, let P denote
the set of all block-structured as well as sound process models.

7Precisely speaking, the ADEPT model (cf. Fig. 2.1) and the Petri Net model (cf. Fig. 2.4)
are not exactly the same; i.e., the execution semantics of the conditional branching is different.
We omit the detail discussions here and refer readers to [185, 148].

19

CHAPTER 2. BASIC CONCEPTS AND NOTIONS

2.1.4 Process Execution Log

In practice, hundreds up to thousands of process instances may be created based
on one particular process model. In PAISs (e.g., ERP systems and workflow man-
agement systems) information about the past execution of process instances is
usually maintained in execution logs. For each executed activity, such execution
log contains information like the point in time the activity was stated or com-
pleted, the process instance it belongs to, the user who performed the activity,
and so on [195]. Table 2.1.4 gives a simple example of an execution log based on
the process model from Fig. 2.1. Genearlly, an execution log contains important
run-time information about a process model and is used for various kinds of anal-
yses [195, 197]. We provide a general overview of techniques for mining process
execution logs in Section 2.5.

Activity Related
Instance

Event User Time

A I1 Activated Chen Li 12:10:13
A I1 Running Chen Li 12:10:57
A I2 Activated Chen Li 12:11:11
A I2 Running Chen Li 12:11:49
A I1 Completed Chen Li 12:12:34
B I1 Activated Edward Fang 12:12:35
B I1 Running Edward Fang 12:12:50
A I2 Completed Chen Li 12:14:02
B I2 Activated Edward Fang 12:14:23
A I3 Activated Jason Zhang 12:14:46
A I3 Running Jason Zhang 12:15:26
B I1 Completed Edward Fang 12:16:23
C I1 Activated Chen Li 12:16:59
C I1 Running Chen Li 12:17:48
B I2 Running Edward Fang 12:18:21
A I3 Completed Jason Zhang 12:19:18

. . .

Table 2.1: Examples of an execution log

From an execution log, we also can extract trace information for each process
instance. Based on their time stamp we can order the activities relating to one
particular process instance into a sequence. For example, given the execution
log from Table 2.1.4, we can obtain the (incomplete) activity sequences ABC for
process instance I1, AB for process instance I2, and A for process instance I3.
Generally, we consider the notion of trace as valid and complete execution se-
quence of activities regarding a particular process instance. Formally, we define
the notion of trace as follows:

Definition 4 (Trace) Let S = (N, E,NT,ET, l) ∈ P be a sound and block-
structured process model. Let further t ≡< a1, a2, . . . , ak > (with ai ∈ N) be a
sequence of activities. We denote t as a trace of S iff:

20

2.2. ADAPTIVE PROCESS MANAGEMENT

� t is valid, i.e., the given execution sequence is producible on S.
� t is complete, i.e., a1 is executed immediately after the completion of the

StartFlow node, and ak is executed immediately before executing the End-
Flow node.

We define TS as the set of all traces that can be produced by process model S.
We only consider traces that log events related to labeled activities, whereas

events concerning silent activities are excluded (cf. Def. 1). As example consider
process model S from Fig. 2.1. Activity sequences like ABCDFGHIJ, ABGHCEFIJ,
and ABGCDFHIBCEFGHIJ constitute both valid and complete traces of S. Like
most process mining algorithms, we assume that the behavior of process model S
can be expressed in terms of its trace set TS . Note that TS constitutes an infinite
set if S contains loops.

2.2 Adaptive Process Management

The ability to effectively deal with process changes and process configurations
has been identified as one of the most fundamental success factors in PAISs
[124, 133, 149, 211, 213]. Considerable efforts have been made to make process
models more flexible [217, 66, 141, 165, 50]. For example, configurable refer-
ence models allow to switch on/off process activities at runtime; i.e., they offer
flexibility to skip some activities [165]. Late binding [1] and late modeling [109]
techniques defer modeling decisions to runtime by enabling users to select frag-
ments at runtime and to specify control dependencies between them on-the-fly.
Declarative approaches [189, 133] further enhance flexibility by only providing a
set of rules and constraints, so that users can compose a process model flexibly,
while taking into consideration the defined constraints. One common property
of all these approaches is that they presume a solid understanding of the process
model. No matter how loosely a process model is defined in order to enhance
flexibility, constraints or potential configurations need to be provided up-front.
Consequently, they cannot cover all exceptions occurring in practice [211]. In
the following, we discuss another category of process flexibility techniques, which
enable dynamic modifications of a process model’s structure during runtime.

2.2.1 Dynamic Process Changes

During the last decade, a variety of dynamic process adaptation techniques was
introduced. These enable both process configurations at build time and process
changes during runtime, while preserving system robustness and consistency [141,
187]. In the following, we first introduce the notion of process change:

Process change : A process change is accomplished by applying a sequence
of high-level change operations to a given process model S [141]. Such operations
structurally modify the initial process model by altering its set of activities and
their order relations. Thus, each application of a change operation results in a
new process model:

21

CHAPTER 2. BASIC CONCEPTS AND NOTIONS

Definition 5 (Process Change and Process Variant) Let P denote the set
of possible process models and C be the set of possible process changes. Let
S, S′ ∈ P be two process models, let ∆ ∈ C be a process change, and let σ =
〈∆1,∆2, . . . ∆n〉 be a sequence of changes performed on initial model S. Then:

� S[∆〉S′ iff ∆ is applicable to S and S′ is the (sound) process model resulting
from the application of ∆ to S.

� S[σ〉S′ iff ∃ S1, S2, . . . Sn+1 ∈ P with S = S1, S′ = Sn+1, and Si[∆i〉Si+1

for i ∈ {1, . . . n}. We also denote S′ as process variant of S.

Examples of high-level change operations include insert activity, delete activ-
ity, and move activity as implemented in the ADEPT change framework [141].
While insert and delete modify the set of activities in a process model, move
changes activity positions and thus the structure of the process model. A formal
semantics of these and other change patterns can be found in [160]. For example,
move(S, A,B,C) moves activity A from its current position within process model
S to the position after activity B and before activity C. Operation delete(S, A),
in turn, deletes activity A from process model S. Finally, insert(S, A,B,C) adds
activity A to the position after activity B and before activity C.8 If some addi-
tional constraints (e.g., concerning the state of a running process) are met, the
high-level change operations depicted in Table 2.2 will be also applicable at pro-
cess instance level. Issues concerning the correct use of these change operations,
their generalization, and formal pre-/post-conditions are outside the scope of this
thesis and are described in [141].

Though the depicted change operations are discussed in relation to the ADEPT
change framework (cf. Section 2.3), they are generic in the sense that they can
be also applied in connection with other process meta models [160, 211, 215]. For
example, a process change as realized in the ADEPT framework can be mapped
to the concept of life-cycle inheritance known from Petri Nets [187]. We refer to
ADEPT since it covers by far most high-level change patterns and change support
features when compared to other adaptive PAISs [211]. Furthermore, with the
AristaFlow BPM Suite [37], an industrial-strength version of the ADEPT technol-
ogy has emerged, which has been applied in a variety of application domains[94].9

In addition to an execution log (cf. Section 2.1.4), adaptive PAISs maintain
change logs [153, 157]. A change log documents the sequence of changes applied
to a process model during its configuration and adaptation respectively.

Definition 6 (Change Log) Let P denote the set of possible process models.
Let S ∈ P be a process model and let Si ∈ P for i ∈ {1, . . . , n} be its variants. A
change log cL is defined as a set {σi

∣∣S[σi〉Si} (σ1 denotes a sequence of change
operations transforming S into Si).

8The ADEPT change framework supports change patterns like inserting, deleting, and mov-
ing activities and process fragments. It further supports additional change patterns as described
in [211].

9Visit www.aristaflow-forum.de for details.

22

2.2. ADAPTIVE PROCESS MANAGEMENT

Change Operation ∆ on S opType subject paramList

insert(S, X, A,B, [sc]) insert X S, A,B, [sc]
Effects on S: inserts activity X between activity sets A and B. It is a conditional
insert if [sc] is specified (i.e. [sc] = XOR)

delete(S, X, [sc]) delete X S, [sc]
Effects on S: deletes activity X from S, i.e. X turns into a silent activity. [sc] is specified
([sc] =XOR) when blocking the branch with X, i.e. the branch which contains X
will not be activated.

move(S, X, A,B, [sc]) move X S, A,B, [sc]
Effects on S: moves activity X from its original position in S to another position
between activity sets A and B. (It is a conditional insert if [sc] is specified)

Table 2.2: Examples of High-Level Change Operations

Fig. 2.5b shows an example of a change log. This log is composed of nine
change log instances clI1 − clI9 . The first change log instance clI1 , for example,
consists of a move operation (op1) and an insert operation (op2).

2.2.2 Change Patterns

Like workflow patterns [193], which describe common modeling constructs of a
process meta model (e.g., sequence, AND/XOR branching [193]), change pat-
terns have been introduced to describe common change operations and change
features respectively [211]. In total, 14 process adaptation patterns were identified
with well-defined pre/post-conditions and well-defined semantics [215, 211, 160].
These change patterns include basic process change operations like deletion, inser-
tion and movement of activities (and process fragments respectively) (see Table
2.2), as well as advanced patterns like swap process fragments or embed process
fragment in loop [211]. In [125], additional patterns were identified by separating
changes at buildtime and runtime, or differentiating between temporary changes
and permanent ones. In the context of this thesis, we consider three basic change
patterns: activity insertion, activity deletion and activity movement (cf. Table
2.2).

1. Based on these three basic change patterns, we can construct most of the
high-level changes. For example, swap process fragments can be realized
based on move operations. Replace process fragment can be realized by
activity deletions plus activity insertions. Finally, as we will discuss in
Chapter 4, the embed process fragment in loop pattern can be realized based
on activity insertions in our approach.

2. Basic change patterns are more commonly supported by available tools than
complex ones. Except the ADEPT change framework, which supports most

23

CHAPTER 2. BASIC CONCEPTS AND NOTIONS

a) Process Instances b) Change Log Instances

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I1 : Lab test

Enter
order

cLI1 = (
op1:=insert(PS, Lab test, Examine Patient, Deliver report),
op2:=move(PS, Inform Patient, Prepare Patient, Examine Patient))

cLI2 = (
op3:=insert(PS, xRay, Inform Patient, Prepare Patient),
op4:=delete(PS, xRay),
op5:=delete(PS, Inform Patient),
op6:=insert(PS, Inform Patient, Examine Patient, Deliver Report),
op2 =move(PS, Inform Patient, Prepare Patient, Examine Patient),
op1 =insert(PS, Lab Test, Examine Patient, Deliver Report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I2 :

Enter
order

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I3 : Lab test

Enter
order

cLI3 = (
op2 =move(PS, Inform Patient, Prepare Patient, Examine Patient),
op1 =insert(PS, Lab test, Examine Patient, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I4 : Lab test

Enter
order

cLI4 = (
op1 =insert(PS, Lab test, Examine Patient, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I5:

Enter
order

cLI5 = (
op1 =insert(PS, Lab test, Examine Patient, Deliver report,
op7:=delete(PS, Deliver report))

Lab test

Lab test

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I6 : Lab test

Enter
order

cLI6 = (
op1 =insert(PS, Lab test, Examine Patient, Deliver report),
op2 =move(PS, Inform Patient, Prepare Patient, Examine

Patient),
op7 =delete(PS, Deliver report))

cLI7 = (
op8:= insert(PS, xRay, Examine Patient, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I7 :

Enter
order

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I8 : Lab test

Enter
order

cLI8 = (
op2 =move(PS, Inform Patient, Prepare Patient, Examine Patient),
op8 =insert(PS, xRay, Examine patient, Deliver report),
op9:=insert(PS, Lab test, xRay, Deliver report))

Examine
patient

Deliver
report

Inform
Patient

Prepare
Patient

Instance I9: Lab test

Enter
order

cLI9 = (
op1 =insert(PS, Lab test, Examine Patient, Deliver report),
op10:=insert(PS, xRay, Examine patient, Lab test))

xRay

xRay

xRay

Figure 2.5: Modified Process Instances and Change Log Instances (taken from
[62])

change patterns, available tools either support no high-level change patterns
at all or only basic ones [211].

For these two reasons, we will focus on the three basic change patterns insert,
delete, and move activities.

24

2.3. THE ADEPT PROCESS MANAGEMENT TECHNOLOGY

2.3 The ADEPT Process Management Technology

The work provided by this thesis has been accomplished in the context of the
ADEPT project. This section gives some insights into ADEPT, which also help
to position the contribution of this thesis.

The ADEPT process management project dates back to the late 90’s. Its
target was to develop a next generation process management technology, which
is more powerful and flexible than contemporary process management systems
are [37, 148]. After a decade of research and development, the ADEPT2 pro-
cess management system emerged, which enables flexible execution of process
instances. ADEPT2 is considered as one of the leading adaptive process manage-
ment system nowadays. The ADEPT2 framework applies a rigor ”correctness-
by-construction” principle, and enables ad-hoc changes of single process instances
during runtime without losing control [141, 37]. It also supports changes at the
process type level and their propagation to running instances if desired and possi-
ble [147]. In the meanwhile, an industry-strength version of the ADEPT2 process
management technology, called AristaFlow BPM Suite, has become available for
academic and industrial use [37]. The advanced flexibility support features have
been demonstrated in numerous projects on advanced applications[94]. 10

The ADEPT2 technology provides advanced features and properties within
one system, which seem to exclude each other, but which are required for the
support of a broad spectrum of processes: ease-of-use for end users and system
developers, high flexibility through the support of non-trivial ad-hoc deviations
at the process instance level, quick implementation of process changes through
process schema evolution, and correctness guarantees enabling the robust execu-
tion of implemented processes [37, 148, 141, 142]. Since ADEPT supports ad-hoc
deviations at both runtime and build time, and also guarantees the soundness
(correctness) of the (resulting) process model in this context, it provides a pow-
erful technology basis for mining process variants in the context of our research.

2.4 Process Lifecycle

Figure 2.6 shows the general lifecycle of a flexible PAIS [213, 217, 218]. It starts
with the design of a sound process model, based on which process instances can
be created and executed to support respective business cases. The execution of
these instances is documented in an execution log (cf. Definition 4). If needed,
authorized users may deviate from the process model (e.g., by adding, deleting
or moving process activities) at the level of individual process instances [141,
187, 216]. Respective instance changes, which capture the deviation from the
original process model, are logged in a change log (cf. Definition 6). Based on
the information from both execution and change logs, we can learn from past
process executions and discover opportunities to optimize and evolve process

10Visit www.aristaflow-forum.de for details.

25

CHAPTER 2. BASIC CONCEPTS AND NOTIONS

models [195, 197, 101, 98]. If, for example, a certain change happens over and
over again at the process instance level, the process designer will be notified and
assisted in adapting the original process model accordingly [141]. In case of long-
running process instances, respective process type changes may be propagated to
the instance level as well [147, 27].

Create Process Schema
ExaminepatientMakeappointmentEnterorder Inform patientMakeappointmentSchema S:A B C ED

Create Process SchemaCreate Process SchemaCreate Process Schema
ExaminepatientMakeappointmentEnterorder Inform patientMakeappointmentSchema S:A B C ED ExaminepatientMakeappointmentEnterorder Inform patientMakeappointmentSchema S:A B C EDA B C ED

Process designer/Process administratorProcess designer/Process administrator CreateInstanceCreateInstanceCreateInstanceExecutionLogProcessMonitoring ExecutionLogExecutionLogProcessMonitoring Process actorArbeitslisteTä tigkeit 1Tä tigkeit 2Tä tigkeit 3Tä tigkeit 4ProcessExecution Process actorArbeitslisteTä tigkeit 1Tä tigkeit 2Tä tigkeit 3Tä tigkeit 4ProcessExecution Process actorArbeitslisteTä tigkeit 1Tä tigkeit 2Tä tigkeit 3Tä tigkeit 4Process actorArbeitslisteTä tigkeit 1Tä tigkeit 2Tä tigkeit 3Tä tigkeit 4Tä tigkeit 4ProcessExecutionProcessExecutionAd-hoc Ad-hoc-ChangeAd-hocAd- Process Variants Ad-hoc-ChangeAd-hoc-ChangeChangeLogChangeLogChangeLogChangeLog

ExaminepatientMakeappointmentEnterorder Inform patientMakeappointmentSchema S:A B C ED ExaminepatientMakeappointmentEnterorder Inform patientMakeappointmentSchema S‘:A B DXC EChange Process Schema ExaminepatientMakeappointmentEnterorder Inform patientMakeappointmentSchema S:A B C EDA B C ED ExaminepatientMakeappointmentEnterorder Inform patientMakeappointmentSchema S‘:A B DXC EExaminepatientMakeappointmentEnterorder Inform patientMakeappointmentSchema S‘:A B DXC EA B DXC EChange Process Schema MigrateInstancesMigrateInstances

and Notification
Escalation I1I2I3 I4I5B CEA D DA C B EA DEB C B EA CDA B E DI6 A C E D

…...

I1: AEBCD, 15;I2: ABDEC 23, ABEDC 40;I3: ACBED 5; I4: ABCDE 200; I5: ABED 2I6: ACED 124;
…...

σ1 =< Move (S, E, A, D) > σ4 =< Move (S, C, B, E) > σ2 =< Move (S, D, B, C), Move (S, E, B, C) > σ3 =< Move (S, C, A, B), Move (S, E, B, D) > σ5 =< Move (S, D, E, End), Delete (S, C) > σ6 =<Delete (S, B), Move (S, E, C, D)> …...

Figure 2.6: The Lifecycle of a PAIS According to [213]

Many efforts have been undertaken to enable PAISs to provide full lifecycle
support and approaches like ADEPT2 [141, 148], CAKE2 [119], WASA2 [224,
207, 223], TRAMs [87], Worklets/Exlets [1, 2], and YAWL [192] have emerged
in this context (for a comprehensive overview see [154, 211]). They all target at
providing users the flexibility to dynamically change the processes running in the
PAISs according to real-world situations.

As discussed in Chapter 1, we focus on the discovery of process models by
learning from past process changes and executions; i.e., we focus on Step 5 of
the PAIS lifecycle (cf. Fig. 2.6). Particularly, we are interested in learning
from change logs or directly from process variants (if change logs do not exist).
When compared to traditional mining techniques, which focus on the analyses
of execution logs, analyzing change logs (or process variants) provides additional
opportunities (see [61, 62] for details). Chapter 8 will further compare mining
techniques based on execution logs and on change logs.

Before we deal with the analysis of process change logs (or process variants
resulting from their application to the original process model), Section 2.5 in-
troduces traditional process mining techniques, which particularly focus on the
analysis of execution logs [195, 197, 39].

26

2.5. PROCESS MINING

2.5 Process Mining

Process mining describes a family of analysis techniques exploiting the informa-
tion recorded in these logs [195, 197, 222, 39, 221, 200]. Typically, respective
approaches assume that it is possible to sequentially record events such that each
event refers to an activity and is related to a particular process instance (i.e.,
trace in our context, cf. Def. 4).

2.5.1 Overview

Process mining addresses the problem that most ”process owners” have very
limited information about what is actually happening in their organization. In
practice there is often a significant gap between what is prescribed or supposed
to happen, and what actually happens. Only a concise assessment of the orga-
nizational reality, which process mining strives to deliver, can help in verifying
process models [126], and ultimately be used in a process redesign effort.

Figure 2.7: Overview of process mining 8

There exist three major classes of process mining techniques as indicated in
Fig. 2.7. Traditionally, process mining has focused on process discovery, i.e. on
deriving information about the original process model, the organizational context,
and the execution properties from execution logs (i.e., event log in Fig. 2.7) [195].
An example of a technique addressing the control flow perspective is the alpha
algorithm [197]. It can construct a Petri net model [185] describing the behavior
observed in an execution log. The Multi-Phase Mining approach [200] can be
used to construct an Event-driven Process Chain (EPC) [171] based on similar
information. First work regarding the mining of other model perspectives (e.g.,

8This figure is cited from the tutorial talk ”Process Mining Tutorial: Beyond Business
Intelligence” given by Prof. W.M.P van der Aalst in BPM’08 conference.

27

CHAPTER 2. BASIC CONCEPTS AND NOTIONS

organizational aspects [190, 112]) and data-driven process support systems (e.g.,
case handling systems) [60] has been introduced as well.

Another line of process mining research is conformance testing [168, 5]. Its
aim is to analyze and measure discrepancies between the model of a process and
its actual execution (as recorded in event logs). This can be used to indicate
problems. Finally, log-based verification does not analyze execution logs with
respect to the original model, but rather checks the log for conformance with
certain desired or undesired properties. For example, one can check whether or
not an process instance is compliant with certain laws or corporate guidelines [5].

At this point, there exist mature tools such as the ProM framework, which
can be applied to real process execution logs, while covering the whole spectrum
depicted in Fig. 2.7 [201].

2.5.2 Illustrating Example

We briefly introduce one selected process mining algorithm, namely the Alpha
Algorithm [197], to illustrate how process mining works in general. The Alpha
Algorithm can be considered as one of the first algorithms suggested for pro-
cess mining, and is often used for illustration purposes (though there exist more
mature algorithms in the meanwhile). Execution Log (simplified) Direct successor relations

I1:A
I2:A
I3:A
I3:B
I1:B
I1:C
I2:C
I4:A
I2:B
I2:D
I5:E
I4:C
I1:D
I3:C
I3:D
I4:B
I5:F
I4:D

A > B
A > C
B > C
C > D
C > B
B > D
E > F

A BC D
E F endstart

Sequences
1

causality: x y : (x > y) (y > x)parallelism: x || y : (x > y) (y > x)choice: x # y : (x > y) (y > x)
D # F

B || CA B

A C
C D
B D
E F

(C || B)
C # E

A # E

B # E

D # E

B # F
C # F

A # F

2 3
I1,I3: ABCD

I2,I4: ACBD

I5: EF

4

a)

b)

c)

d)

e)

A # D ...

Figure 2.8: Illustrative example for process mining algorithms

Fig. 2.8a first shows a simplified version of an execution log. This log abstracts
from time, event type, and actors, but limits the information to the order in which

28

2.5. PROCESS MINING

activities were executed. The log further contains information about five process
instances. In each of these process instances, some of the six activities (A,B,C,D,E
and F) were executed in different orders.

The execution log is first transformed into activity sequences according to the
order in which the activities were executed in each process instance (i.e., traces (cf.
Def. 4)). In our example, process instances I1 and I3 have activity sequence ABCD,
I2 and I4 have sequence ACBD and instance I5 has activity sequence EF. Based on
these activity sequences, we can identify the direct successor relationship between
activities. For example, in activity sequence ABCD we can see that B is a direct
successor of A (denoted as A > B), B is a direct successor of C, (B > C) and C is a
direct successor of D (C > D). The direct successor relationships obtained by the
execution log are depicted in Fig. 2.8c.

Based on the direct successor relationships, we can define three types of or-
dering relations: causality (x → y), parallelism (x||y), and choice (x#y). For
example, we obtain causality relationship x → y if y is a direct successor of x,
but not vice versa (i.e., (x > y) ∧ (y > x)). The rules for deriving the three
types of ordering relations as well as the results of our example are shown in
Fig. 2.8d). Based on these ordering relations, we can obtain a process model
described in terms of a Petri Nets (see Fig. 2.8e). Clearly, the alpha algorithm
is more advanced than what we described in this case and is able to handle
more complex scenarios. Due to space limitations, we omit these complexity and
technical details, and refer to [197] instead.

This simple example shows how process mining works in general. Though
advanced algorithms like heuristic mining [221] or genetic mining [39] can deal
with more complex scenarios (including noise in logs or duplicated tasks), they
basically share similar design principles.

In principle, process mining algorithms are also applicable in the context of
this thesis, i.e., for mining process variants. We will briefly discuss this in Chapter
3, and systematically compare traditional process mining algorithms with our
algorithms in Chapter 8.

29

3
Mining Process Variants: Challenges and

Goals

3.1 Introduction

This chapter tries to answer our first research question (cf. Section 1.2):
What are fundamental challenges in mining process model variants? Are ex-

isting mining techniques suitable for realizing the goal of reducing process config-
uration efforts?

To be more precise, Section 3.2 first describes the scientific challenges that
emerge in respect to the mining of process model variants. Section 3.3 then
discusses the specific goals of our research and explains why traditional process
mining techniques cannot satisfy them.

3.2 Challenges for Mining Process Variants

Before we deal with issues related to the the mining of process variants, we
discuss basic aspects concerning the representation of process changes. First, we
explain why process variant mining cannot be solely based on execution logs,
but necessitates the consideration of applied changes as well. Second, we sketch
why it is beneficial to express changes in terms of high-level change operations
(cf. Def. 2.2) rather than low-level change primitives (e.g., to add/delete nodes
and edges). Third, we discuss how the application of high-level change operation
affects execution behavior of a process model.

3.2.1 Complementary Nature of Change and Execution Logs

Adaptive PAISs support ad-hoc deviations at the process instance level and record
them in change logs (cf. Section 2.2.1). Thus, they provide additional information
when compared to traditional PAISs which only record execution logs (cf. Section
2.1.4). Change logs and execution logs document different run-time information
on adaptive process instances and are not interchangeable. Even if the original

31

CHAPTER 3. MINING PROCESS VARIANTS: CHALLENGES AND
GOALS

process model is given, it will be not possible to convert the change log of a
process instance to its execution log or vice verse.

As example, take the simplified medical treatment procedure as depicted
in Fig. 3.1a: a patient is admitted (activity admit) to a hospital, where he
first registers (activity register), then receives treatment (activity receive
treatment), and finally pays (activity pay). Assume that, due to an emer-
gency situation, for one particular patient, we first want to start the treatment
of this patient and allow him to register later during treatment. To represent
this exceptional situation in the process model of the respective instance, the
needed change would be to move activity receive treatment from its current
position to a position parallel to activity register. This change leads to a
new model S′, i.e., S[σ〉S′ with σ =< move(S, reveive treatment, admit,
pay) >. In addition, the execution log e for this particular instance can be
e =< admit, receive treatment, register, pay > (cf. Fig. 3.1b). If we
solely consider process model S and its execution log, it will be not possible to
determine this change because the process model which can produce such exe-
cution log is not unique. For example, a process model with the four activities
organized in four parallel branches could produce this execution log as well. On
the contrary, it is generally not possible to derive the execution log from a change
log, since execution behavior of S′ is also not unique. For example, a trace
< admit, register, receive treatment, pay > is also producible on S′. Con-
sequently, change logs provide additional information when compared to pure
execution logs.

3.2.2 Why Do We Need High-level Change Operations?

We now discuss why we prefer high-level change operations for expressing process
model changes rather than low-level change primitives (i.e., low-level changes of
process graphs at edge and node level). Consider Fig. 3.2. Its left hand side shows
an original process model S which consists of a parallel branching, a conditional
branching, and a silent activity τ (depicted as empty node) connecting these two
blocks. Assume that two different high-level change operations are applied to S
resulting in models S1 and S2 respectively: ∆1 moves activity C from its current
location to the position between activities A and B, which leads to process model

e=<admit, receive treatment, register, pay>
S[∆>S’Admit Register Receive treatment Pay

a) S: original process model
Admit PayRegisterReceive treatmentb) S’: final execution & changeAND-Split AND-Join

∆=Move (S, register, admit, pay)

Figure 3.1: Change Log and Execution Log are not interchangeable

32

3.2. CHALLENGES FOR MINING PROCESS VARIANTS

delEdge(StartFlow,A); delEdge(A,B); delEdge(B,C); addEdge(B,A); addEdge(A,C); addEdge(StartFlow,B)
delEdge(A,B); delEdge(B,C); delEdge(B,D); delEdge(C, τ); delEdge(D,τ); delEdge(t,E); delEdge(τ, F}; delNode(τ); addEdge(A,C); addEdge(C,B); addEdge(B,D); addEdge(D,E); addEdge(D,F); updateNodeType(D, XorSplit); updateNodeType(B, empty);GBA

C

D

E

F

DA C
E

F
B G

B
A C

D

E

F
G

Change Primitives
Change Primitives

∆1=Move (S, C, A, B)

S1: model after change ∆1
∆2=Move (S, A, B, C)

S[∆1>S1

S[∆2>S2
S: original process model S2: model after change ∆2AND-SplitAND-Join XOR-SplitXOR-Join

Snapshot difference

Figure 3.2: High-level change operation and corresponding change primitives

S1, i.e., S[∆1〉S1 with ∆1 = move(S, C,A,B). ∆2, in turn, moves activity A to the
position between activities B and C, i.e. S[∆2〉S2 with ∆2 = move(S, A,B,C). Fig.
3.2 additionally depicts the change primitives representing snapshot differences
between S and models S1 and S2 respectively.

Overall, using high-level change operations offers the following advantages:

1. High-level change operations contribute to guarantee model soundness: i.e.,
the application of a high-level change operation to a sound model S will
result in another sound model S′ if certain pre-conditions are met [141].
This also applies to our example from Fig. 3.2. By contrast, when applying
one single change primitive (e.g., deleting an edge in S) soundness cannot
be guaranteed in general. For example, if we delete any of the control edges
in S, the resulting process model will be not structurally sound (cf. Def.
5).

2. High-level change operations provide richer syntactical meanings than change
primitives. Generally, a high-level change operation is built upon a set of
change primitives which collectively represent a complex modification of a
process model. As example take ∆1 from Fig. 3.2. This high-level change
operation requires 15 change primitives for its realization (deleting edges,
adding edges, deleting the silent activity, and updating the node types).

3. An important aspect, not discussed so far, concerns the number of change
operations needed to transform model S into target model S′. For example,
we need to apply only one move operation to transform S to either S1 or
S2 (cf. Fig. 3.2). However, when using change primitives, migrating S to
S1 necessitates 15 change primitives, while the second change ∆2 can be
realized based on 6 change primitives. This example shows that change
primitives do not provide an adequate means to determine the difference

33

CHAPTER 3. MINING PROCESS VARIANTS: CHALLENGES AND
GOALS

between two process models. Thus the required number of change primitives
cannot adequately represent the efforts for process model transformations.

3.2.3 The Challenge to Derive High-level Changes

After sketching the benefits coming with high-level change operations, this section
discusses the challenges to be tackled when deriving them. When comparing
two process models, the change primitives needed for transforming one model
into another can be easily determined by performing two snapshots and a delta
analysis on them [93]. An algorithm to minimize the number of change primitives
is given in [153]. However, when trying to derive the high-level change operations
needed for model transformation, a number of challenges occurs. As example
consider Fig. 3.3:

1. When performing two delete operations on S (i.e., ∆1 = delete(S, B) and
∆2 = delete(S, C)), we obtain new model S′′; i.e., S[σ〉S′′ with σ =<
∆1, ∆2 >, as well as an ”undetectable” intermediate model S′ with S[∆1〉S′
and S′[∆2〉S′′. When examining the change primitives corresponding to
each high-level change operation, we first need to add edge (A,C) after the
first delete operation ∆1, and remove this edge (A,C) when applying the
second delete operation ∆2. However, when performing a delta analysis for
the original process model S and the resulting one S′′, the two change prim-
itives (addEdge(A,C) introduced by the first delete operation and delEdge
(A,C) introduced by the second one) jointly have no effect on the resulting
process model S′′, i.e., they cannot be detected by snapshot analysis. Con-
sequently, deriving high-level change operations based on change primitives
would be challenging because the change primitives required for realizing
every high-level change do not always appear in the snapshot differences
between original and resulting model. In Fig. 3.3, none of the two change
primitive sets associated with ∆1 or ∆2 constitute a sub-set of the change
primitive set associated with overall change σ.

2. Even if there exists only one high-level change operation, it remains difficult
to derive it by purely analyzing change primitives. For example, in Fig.
3.2 the delta algorithm shows that 15 change primitives are needed to
transform S into S1. However, the depicted changes can be also realized by
just applying one high-level move operation to S.

For these reasons it is difficult to derive high-level change operations between
two process models solely by analyzing change primitives. We will introduce a
method based on boolean algebra to tackle this challenge in Chapter 5.

3.3 Goals for Mining Process Variants

This section discusses the major goal in respect to the mining of process variants,
namely to derive a reference process model from a collection of process variants.

34

3.3. GOALS FOR MINING PROCESS VARIANTS

S’(∆2>S’’S(∆1>S’∆1= Delete (S, B) ∆2= Delete (S’, C) delEdge(A,B), delEdge(B,C), addEdge(A,C), delNode(B)delEdge(C,D), addEdge(A,D), delEdge(A,C), delNode(C)S(σ>S’’
σ =< Delete (S, B), Delete (S, C) > delEdge(A,B), delEdge(B,C), delEdge(C,D),addEdge(A,D), delNode(B)delNode(C)

S’’ A D

S’ A C D

S A B C D

Figure 3.3: Non-detectable Change Primitives

This shall be done in a way such that the existing variants (as well as future
ones) can be efficiently configured out of the discovered model. We measure
efforts for corresponding process configurations in terms of the number of high-
level change operations needed to transform the discovered reference model into
the respective model variant. The challenge is to find a reference model such
that the average number of high-level change operations needed (i.e., the average
distance) to transform the discovered model into any variant becomes minimal
with respect to the given variant collection.

To make this more clear, we first compare process variant mining with tra-
ditional process mining [195]. The latter (cf. Section 2.5) has been extensively
studied in literature. Its key idea is to discover a process model by analyzing
the execution behavior of (completed) process instances as captured in execution
logs (cf. Section 2.1.4) [195]. Different mining techniques like alpha algorithm
[197], heuristics mining [221] and genetic mining [39] have been proposed in this
context. Obviously, input data for traditional process mining differs from the one
of process variant mining. While traditional process mining operates on execu-
tion logs, process variant mining should be based on a collection of process model
variants.

Of course, such high-level consideration is not sufficient to prove that existing
mining techniques do not provide optimal results with respect to the aforemen-
tioned goal. In principle, existing process mining techniques [197, 39] can be
applied to our problem as well. For example, we could derive all traces pro-
ducible by a given collection of process variants [231] and then apply existing
mining algorithms to them. To make the difference between process mining and
process variant mining more evident, we consider behavioral similarity as well as
structural similarity between two process models in the following.

The behavior of a process model S can be represented by the set of traces
(i.e., TS) it can produce. Therefore, two process models can be compared based
on the difference between their trace sets [197, 231]. By contrast, biases can
be used to express the (structural) distance between two process models [100],
i.e., the minimal number of high-level change operations needed to transform one
model into the other. While the mining of process variants focuses on structural

35

CHAPTER 3. MINING PROCESS VARIANTS: CHALLENGES AND
GOALS

similarity, traditional process mining addresses behavioral issues. Obviously, this
leads to different choices with respect to the design of the mining algorithms and
also suggests different mining results.

Fig. 3.4 depicts two very simple examples. First, consider Example 1 which
shows two process variants S1 and S2. Assume that 55 process instances are
running on S1 and 45 instances on S2. We want to derive a reference process
model such that the efforts for configuring the 100 process instances out of the
reference model become minimal. If we focus on behavior, like existing process
mining algorithms do [197], the discovered process model will be S; all traces
producible on S1 and S2, respectively, can be produced on S as well, i.e. TS1 ⊆ TS

and TS2 ⊆ TS . We use trace coverage to measure to what percentage the traces
producible by the variants are also producible by the reference model. We obtain
100% as trace coverage for S, i.e., all traces producible by the variants can be
produced by the reference model S as well. However, if we adopt S as reference
model and relink process instances to it, all instances running on S1 or S2 will
have a non-empty bias (bias can be measured in terms of the difference between
reference model and variant models). More precisely, we would need to move B in
S to either obtain S1 or S2; i.e., S[σ1〉S1 with σ1 = move(S, B,A,C) and S[σ2〉S2

with σ2 = move(S, B,C,D) (cf. Def. 5). Using the number of instances as weight
for each variant, average distance between S and Si (i = 1, 2) is one; i.e., for each
process instance we need on average one high-level change operation to configure
S into S1 and S2, respectively.

By contrast, if we focus on biases we should choose S′ as reference model.
While no adaptations become necessary for the 55 instances running on S1,
we need to move B for the 45 instances based on S2, i.e. S′[σ′〉S2 with σ′ =
move(S′, B,C,D). Therefore, average weighted distance between S′ and variants
Si (i = 1, 2) corresponds to 0.45. Though S′ does not cover all traces variants
S1 and S2 can produce (i.e., TS2 * TS′ , and we obtain trace coverage of S′ as
55%), adapting S′ rather than S as the new reference model requires by average
less efforts for process configuration, since average distance between S′ and the
instances running on both S1 and S2 is 55% lower than when using S.

Regarding Example 2 from the bottom of Fig. 3.4, activity X is only present
in variant model S2, but not in S1. When applying traditional process mining to
this case, we obtain model S (with X being contained in a conditional branch).
If we want to minimize average change distance, in turn, we need to choose S′ as
reference model. Note that we consider rather simple process models in Fig. 3.4
in order to illustrate basic ideas. In Chapter 8, we will provide a more systematic
comparison based on a large amount of process variants with complex structure
as well.

Our discussions on the difference between behavioral and structural similarity
also indicate that current process mining algorithms do not consider structural
similarity based on bias and change distance (we quantitatively compare our
mining approach with existing algorithms in Chapter 8). First, a fundamental
requirement for traditional process mining concerns the availability of a critical
number of instance traces. An alternative method is to enumerate all traces the

36

3.4. SUMMARY

Example 1
Example 2

A B C D
C DA

X
B

Focus on behavior

Focus on biases

S1
S245 instances on

55 instances on

S

S’

A B C D

A C B D

S1
S2

A B C D

Focus on behavior

Focus on biases

55 instances on

45 instances on

A D
B

C
S

S’

Average
distance

Trace
coverage

A B C X D

Process variants Reference modelAND-Split AND-Join

XOR-Split XOR-Join
A B C X D

: 1.0 : 100%

Average
distance

Trace
coverage: 0.45 : 55%

Average
distance

Trace
coverage: 1.0 : 100%

Average
distance

Trace
coverage: 0.45 : 55%

Figure 3.4: Mining focusing either on behavior or on their structure

process variants can produce (if it is finite) to represent the process model, and
to use these traces as input source for traditional process mining algorithms.
Unfortunately, this does also not satisfy our need to minimize average distances
since it focuses on covering behavior as captured in execution logs (see Examples
1 and 2 from Fig. 3.4, and we will provide a detailed comparison in Chapter
8). Clearly, enumerating all the traces would be also a tedious and expensive
task. For example, if a parallel branching block contains five branches and each
branch contains five activities, the number of traces for such structure will be
(5× 5)!/(5!)5 = 623, 360, 743, 125, 120.1

Note that this Chapter explained our design goal and motivated our approach
specially focusing on model adaptations in a rather informal and qualitative way.
In Chapter 8, we will provide a detailed and quantitative evaluation of our ap-
proach based on formal evaluation criteria.

3.4 Summary

We have motivated the need for process variant mining, discussed its major goals
as well as relevant technical issues, and elaborated its differences when compared
to traditional process mining. We believe that process variant mining will enable
learning from past process adaptations. We have re-motivated the goal of process
variant mining: by mining a collection of process model variants, we want to

1Not all process mining algorithms require first enumerating the trace set of process variants,
we discuss this issue in detail in Chapter 8.

37

CHAPTER 3. MINING PROCESS VARIANTS: CHALLENGES AND
GOALS

discover a reference process model which can be easily configured into the process
variants.

We have further briefly compared process variant mining with traditional pro-
cess mining. This comparison has shown that traditional process mining does not
fully satisfy the need for deriving a process model which is easy configurable. This
justifies the efforts for designing specific algorithms for process variant mining.
In Part II, we will introduce several algorithms for mining process variants, and
in Chapter 8, we will give a systematic comparison between process mining and
process variant mining.

38

Part II

Representing, Comparing &
Mining Process Variants

39

4
Representing Block-structured Process

Models as Order Matrices

4.1 Introduction

The ability to manage, analyze and diagnose business process models is getting
increasingly important. Generally, it is not always sufficient to just consider the
nodes and edges of a process model. Instead, more sophisticated and mathe-
matical representations are needed to enable advanced analysis and processing
options. In this context, matrix representations have been applied to various pro-
cess analysis scenarios [181, 166, 195, 39]. For example, the marking of a Petri
Net can be regarded as vector and its transition relations be described as matrix.
Then the firing of a transition can be expressed in terms of matrix multiplication
[187]. Based on this we can easily analyze properties like free-choice or liveness
[39]. In process mining, causal matrices are used to represent relationships be-
tween transitions in Petri Nets. Causal matrices are also applied in the context of
genetic process mining to discover a process model which captures the execution
traces of a given process instance collection best [39]. In a more general way, we
can consider process models as directed graphs and represent them by their adja-
cency matrices for various graph analyses (e.g., reachability analysis, derivation
of minimal spanning tree, or graph pattern discovery [166, 181]). Finally, matri-
ces are used to classify, cluster or associate graph data in various data mining
fields [181].

So far, most matrix representations of process models (or graphs in general)
have focussed on nodes and edges. However, in scenarios in which the ability to
support process adaptation and configuration becomes increasingly important,
these matrix representations cannot be directly applied [98]. For example, if we
move one transition in a Petri net to another position all reachable states need
to be re-computed, which results in a complete new matrix representation of this
Petri net. Or, if we remove one activity from the adjacency matrix of a sound
process model, we may obtain an erroneous matrix which does not represent a
sound process model anymore.

In this chapter, we introduce the notion of order matrix. Basically, this matrix

41

CHAPTER 4. REPRESENTING BLOCK-STRUCTURED PROCESS
MODELS AS ORDER MATRICES

represents all transitive relations between activities of a block-structured process
model. In Chapter 5, this order matrix representation will act as a basis for
measuring structural similarity between process models, and in Chapters 6 and 7
we will use it when mining process model variants. This chapter focuses on basic
concepts, algorithms and formal properties of order matrices, while later chapters
(Chapters 5, 6 and 7) apply these in several respects.

Chapter 4 is organized as follows. Section 4.2 first provides the formal defini-
tion of an order matrix and gives an illustrative example. Section 4.3 discusses
benefits of using order matrices when compared to common tree representations
of process models. We conclude with a summary in Section 4.4.

4.2 Basic Definition of an Order Matrix

In the context of process changes, one key feature is to maintain the struc-
ture of the unchanged parts of a process model [141, 187]. For example, when
deleting an activity this should neither influence successors nor predecessors of
this activity, and therefore also not their order relations. To incorporate this
in our matrix-based model representation, rather than only looking at direct
predecessor-successor relationships between activities (i.e. control edges), we con-
sider the transitive control dependencies for each pair of activities. As example
consider process model S in Fig. 4.1a and its corresponding process structure
tree T in Fig. 4.1b. In the following, we will based the definition of the order
matrix and its semantics on the process structure tree which we introduced in
Section 2.1.2 (cf. Def. 2).

Process model S

(b)

Process structure tree T

XOR1Loop1
Seq1AND1 D GA B ESeq2C F τAND-Split AND-JoinXOR-Split XOR-JoinControl Flow Loop

A
C

B E

F

D G

(a)

Figure 4.1: Process Model S and its corresponding process structure tree T

42

4.2. BASIC DEFINITION OF AN ORDER MATRIX

4.2.1 Nearest Common Ancestor

Before we formally introduce order matrix, we first need to introduce the concept
of nearest common ancestor in a process structure tree:

Definition 7 (Nearest Common Ancestor) Let T = (N,C, CT, E, l) be a
process structure tree and let a, b ∈ N be two different nodes of T . Then, we
denote connector c ∈ C as nearest common ancestor NCA(a, b) of these two
nodes iff:

� c ≺ a and c ≺ b
� @c′ ∈ C : c′ ≺ a, c′ ≺ b and c ≺ c′

Note that the nearest common ancestor of two nodes always refers to a con-
nector since nodes constitute leaves of the process structure tree and consequently
cannot be ancestors. Here we have assumed that a process structure tree contains
at least two nodes and one connector. Finding the nearest common ancestor in
a tree is a well researched topic. Based on the algorithms presented in [70], we
are able to compute the nearest common ancestor for any two nodes in a process
tree T in linear time; i.e., O(n) with n = |N ⋃

C|.

4.2.2 Representing a Process Model as Order Matrix

Based on the process structure tree T of a block-structured process model S and
the concept of nearest common ancestor (cf. Def. 7), we can introduce the notion
of order matrix, which uniquely represents a process structure tree and thus a
block-structured process model (cf. Theorem 1).
Definition 8 (Order matrix) Let S be a block-structured process model and let
T = (N, C, CT,E, l) be its process structure tree. A is called order matrix of T
with Aaiaj representing the order relation between activities ai,aj ∈ N , i 6= j iff:

� Aaiaj = ’1’ iff in T , ai and aj have as nearest common ancestor a ”Seq”
connector; ai is contained in the left subtree of Seq and aj in its right
subtree.

� Aaiaj
= ’0’ iff in T , ai and aj have as nearest common ancestor a ”Seq”

connector; ai is contained in the right subtree of Seq and aj in its left
subtree.

� Aaiaj = ’+’ iff in T , ai and aj have as nearest common ancestor an ”AND”
connector.

� Aaiaj = ’-’ iff in T , ai and aj have as nearest common ancestor an ”XOR”
connector.

� Aaiaj = ’L’ iff in T , ai and aj have as nearest common ancestor a ”Loop”
connector.

Fig. 4.2 depicts the block-structured process model S, process structure T
(from Fig. 4.1) and its corresponding order matrix A. Note that silent activity τ ,
which was introduced as the direct successor of connector loop1 in T , is included

43

CHAPTER 4. REPRESENTING BLOCK-STRUCTURED PROCESS
MODELS AS ORDER MATRICES

Order matrix AProcess model S

AND-Split AND-JoinXOR-Split XOR-JoinControl Flow Loop

A
A
B

B C D E F G

C
D
E
F
G

11 1 1 11 1 1 1 11 11 1 1 1110 0 00 00 0 00 00 0 0 00 0 0 0
+

+

-

- -
-

τ

τ

111
-010 0 0L L-

LL‘0’ : successor ‘1’ : predecessor‘+’ : AND-block ‘-’ : XOR-block‘L’ : Loop
A

C

B E

F

D G

a) (b) (c)

Process structure tree T

XOR1Loop1
Seq1AND1 D GA B ESeq2C F τ

Figure 4.2: Block-structured process model S, Process structure tree T and order
matrix A

in the order matrix A as well (cf. Section 2.1.2). This order matrix contains all
five order relations from Def. 8. For example, activities E and C have as nearest
common ancestor connector XOR1. Thus, we assign ’-’ to matrix elements AEC and
ACE. Since activities B and G have as nearest common ancestor connector Seq1,
and B is on its left subtree while G is on its right one, we further obtain order
relations ABG = ’1’ and AGB = ’0’ respectively.

Special attention should be paid to the order relations between silent activity
τ and the other activities. Since τ is the direct successor of connector Loop1, order
relation ’L’ indicates those nodes in T which are descendants of its corresponding
Loop connector. Consequently the order relations between τ on the one hand
and activities C and F on the other hand are set to ’L’. This implies that C
and F are descendants of a Loop connecter and consequently implies that they
are included in a loop block in the corresponding process structure and process
model respectively. Note that the main diagonal of an order matrix is empty
since we do not compute the nearest common ancestor of an activity with itself.

The following Theorem 1 states that an order matrix A can uniquely represent
a corresponding process structure tree T .

Theorem 1 Let T = (N, C,CT, E, l) be a process structure tree. Let further
A|N |×|N | be the order matrix constructed based on T . Then: such order matrix
A exists and is unique.

Proof 1 See Appendix A.2.

Since a process structure tree T itself constitutes a unique representation of
a block-structured process model S [204], and T can be uniquely represented by
an order matrix A (cf. Theorem 1), order matrix A is a unique representation of
S as well. Consequently, it is sufficient to analyze the order matrix of a block-
structured process model. We make use of this in the following Chapters.

44

4.3. MATRIX AND TREE: REPRESENTING PROCESS MODELS FROM
DIFFERENT PERSPECTIVES

In [103] we provided two algorithms which transform a process model directly
to its corresponding order matrix and vise versa without the need to compute
the process structure tree first. This way we can reduce the complexity for such
transformation to O(2m2) (with m = |N |), which is lower than first transforming
a process model into a tree (O(m)), and then computing nearest common ancestor
for every pair of activities (O(m3)).

4.3 Matrix and Tree: Representing Process Models
from Different Perspectives

Various papers have discussed use cases for process structure trees [46, 204]. Gen-
erally a process tree provides a fine-grained decomposition of a process model that
is suited for parsing, translation, and pattern discovery [204]. Process structure
trees have been also used for speeding up process verification [205], for construct-
ing process models based on process patterns [59], and for comparing process
models [46]. As our order matrix (cf. Def. 8) is defined based on the process
structure tree, we want to elaborate on the value and benefit added by the intro-
duction of the order matrix.

4.3.1 Process Changes Made Easy

For any process model, its order matrix captures transitive order relations be-
tween activities. Based on this property, an order matrix can be used to specify
process changes in terms of high-level change operations (e.g., delete, insert or
move activities) [141, 187]. For example, if we delete an activity from an order ma-
trix (i.e., remove its corresponding row and column), the resulting matrix will be
a representation of a valid process model again since the order relations between
all other activities remain unchanged. When considering Fig. 4.3, for instance,
deleting activity E from order matrix A results in order matrix A′, which again,
represents a sound and block-structured process model S′. Activity insertion can
be directly realized for order matrices as well. As example consider model S′ in
Fig. 4.3. Assume that we want to insert activity E as alternative choice (i.e.,
XOR) for the parallel block that comprises activities A,B and D. Clearly, we want
to ensure that the resulting model remains sound and block-structured. This
can be realized based on order matrix A′ of S′. First, we add one row and one
column to A′ in order to capture the new activity E. Then we cluster E with block
{A,B,D} based on order relation ’-’ (XOR block); i.e., we set AEA, AEB and AED

to ’-’. Further, we set order relations between E and all other activities to the
ones A, B and D have in respect to these activities. This way, we actually replace
block {A,B,D} by block {A,B,D,E} in which E and {A,B,D} constitute different
branches of an XOR-block, i.e., we obtain order matrix A′′ representing model
S′′ in Fig. 4.3.

When compared to a process model and its corresponding process structure
tree respectively, the order matrix eases structural process changes. Users only

45

CHAPTER 4. REPRESENTING BLOCK-STRUCTURED PROCESS
MODELS AS ORDER MATRICES

A
C

B E

F

D G

a) Process Model b) Order Matrix c) Process
Structure Tree

S

S’

A

CB F G
D

ES’’

A
C

B
F GD

Loop1Seq1AND1 D GA B Seq2C F
A

A
B

B C D F G

C
D
F
G

11 1 11 1 1 11 11 1 110 0 00 00 00 0 0 00 0 0
+

+
τ

τ

111010 0 0L L
LL

A

A’
A’’ A

A
B

B C D E F G

C
D
E
F
G

11 1 11 1 1 11 11 1 110 0 00 00 00 0 0 00 0 0
+

+
τ

τ

111010 0 0L L
LL0- - -1 1 1 1

- -
-

-
000

A
A
B

B C D E F G

C
D
E
F
G

11 1 1 11 1 1 1 11 11 1 1 1110 0 00 00 0 00 00 0 0 00 0 0 0
+

+

-

- -
-

τ

τ

111
-010 0 0L L-

LL
T

T’
T’’ Loop1Seq1 GE Seq3C F

XOR1Seq2AND1A B D

XOR1Loop1
Seq1AND1 D GA B E Seq2C F τ

τ

τ

Figure 4.3: Process Model, Order Matrix and Tree

need to focus on the activities to be modified, without worrying about adaptations
of the corresponding process model and process tree respectively. For example,
moving an activity within a process structure tree often requires modifying the
whole tree structure. As illustrated in Fig. 4.3, when moving E in S such that E
and block {A,B,D} belong to different branches of an XOR block afterwards (as
in S′′), almost the whole tree needs to be restructured. Reason is that a process
tree strongly depends on the blocks in a process model (in fact, a sub-tree is a
block) [204], and changing an activity in a process model often results in changing
process blocks as well. However, in the corresponding order matrix we only need
to modify the order relations of E.

46

4.3. MATRIX AND TREE: REPRESENTING PROCESS MODELS FROM
DIFFERENT PERSPECTIVES

4.3.2 Identifying Process Blocks

One popular reason to transform a process model into a process tree structure is to
identify blocks [204, 205, 59, 92]. For example, [205] decomposes a large process
model into smaller blocks in order to enable faster validation and verification;
[59] allows constructing a process model dynamically using process patterns and
process blocks. Order matrices can additionally be used for block analysis in two
respects:

1. We can use an order matrix to quickly decide on whether or not certain
activities can form a block. Two activities can form a block iff they have
the same order relations with all remaining activities. Generally, we can
decide whether or not an arbitrary set of activities may form a block. If
certain activities have the same order relations to all remaining activities in
a process model, they can form a block. As example consider order matrix
A in Fig. 4.3: A,B and D can form a block since they have same order
relations with C,E,F,τ and G; however, this does not apply to A,B,D and
E since activity E shows a different order relation to C than A does. Such
judgment has linear complexity.

2. An order matrix helps enumerating all possible blocks within a process
model. Based on the aforementioned analysis, we can conclude that two
disjoint blocks which have the same order relations to all activities outside
these two blocks, may form a larger block. Based on this, a block containing
i activities can be identified by judging whether or not two disjoint blocks
containing j and k activities (with i = j+k) may form a block. Starting with
blocks which comprise exactly one activity (i.e., the activities themselves),
we can iteratively find all blocks in a process model (Chapter 7 formally
describes an algorithm). As example consider order matrix A in Fig. 4.3.
All blocks in process model S are listed in Table 4.1.

3. As discussed in Section 2.1.2, a sub-tree within a process structure tree
corresponds to a block of its corresponding process model, but NOT vise
versa. As example consider Fig. 4.4. Process structure trees T , T1 and T2

constitute different trees but represent the same process model (cf. S in Fig.

Block Size Blocks
1 {A}, {B}, {C}, {D}, {E}, {F}, {G}, {τ}
2 {A,B}, {C,F}
3 {A,B,D}, {C,F,τ}
4 {C,F,τ,E}
5 {C,F,τ,E,D}, {C,F,τ,E,G}
6 {C,F,τ,E,D,G}
7 {A,B,D,C,F,τ,E}
8 {A,B,D,C,F,τ,E,G}

Table 4.1: All blocks of process model S from Fig. 4.3

47

CHAPTER 4. REPRESENTING BLOCK-STRUCTURED PROCESS
MODELS AS ORDER MATRICES

4.3). In this case, block {A,B,D} corresponds to a sub-tree within T1, but
not a sub-tree in T or T2. Therefore, identifying all sub-trees in a particular
process structure tree does not imply that we have enumerated all blocks
in the corresponding process model. Reason is the process structure tree of
a process model is not necessarily unique, we refer [204] for the details.

XOR1Loop1
Seq1AND1 D GA B ESeq2C F τ

Process structure tree T Process structure tree T1 Process structure tree T2
XOR1Loop1

Seq2AND1 D GA B ESeq4C F τ
Seq3Seq1

XOR1Loop1
Seq2AND1 D GA B ESeq3C F τ

Seq1

Figure 4.4: Three different process trees representing the same process model

Clearly, for the aforementioned use cases (i.e., judging whether activities can
form a block, or enumerating all blocks in a process model) it would be difficult to
realize them based on the process structure tree. First, the process structure tree
of a process model is not necessarily unique; i.e., the model can be expressed by
different tree structures and hence implies different blocks [204]. Second, though
there are techniques to decompose process models into tree representations, we
are not aware of any technique that can decide in linear time whether certain
activities can form a block or that enumerates all blocks of a process model.

4.4 Summary

We provided a matrix representation for block-structured process models, which
we denote as order matrix. Such matrix constitutes a unique representation of
a process structure tree and consequently a unique representation of a block-
structured process model. We compared our order matrix with process tree
representations. Results indicate that the order matrix better supports process
changes, and fosters the identification of process blocks. In the following chap-
ters, we will discuss some use cases for the order matrix in the context of process
changes. This includes an approach for measuring the distance between two block-
structured process models, as well as algorithms for mining process variants. In
the latter context, we will also provide an intuitive approach for aggregating the
order matrices of a process variant collection, as well as for processing such an
aggregated order matrix in the context of process variant mining.

48

5
Measuring Process Model Similarity

based on High-level Change Operations

5.1 Introduction

As discussed in Chapter 2, the pivotal research on process flexibility over the
last years has provided the foundation for enabling dynamic process changes
[187, 11, 141, 224, 87]. Process flexibility denotes the capability of a process-
aware information system to reflect externally triggered changes by modifying
only those aspects of a process, and its implementation respectively, that need
to be changed, while keeping the other parts stable; i.e., the ability to change or
evolve the process without completely replacing it [141]. To compare two process
models is a fundamental task in this context. In particular, it becomes necessary
to calculate the minimal difference between two process models based on high
level changes. If we need to transform one model into another, for example,
efforts can then be reduced and the transformation can go smoothly; i.e. we do
not need to re-define the new process model from scratch, but only apply these
high-level changes (cf. Def. 5) either at process type or process instance level
(see [154] for an overview of existing techniques for dynamic process changes).

In this chapter, we deal with our second research question (cf. Section 1.2):
How shall we measure the distance between process models such that it can

reflect minimal efforts for process model configurations?
Clearly, our focus is on minimizing the number of high-level change operations

needed to transform one block-structured process model S into another block-
structured process model S′. Soundness of the resulting process model should
be also not sacrificed. We apply the high-level change operations as described
in Section 2.2 in the given context. By considering high-level changes, we can
distinguish our approach from traditional similarity measures like graph or sub-
graph isomorphism [181, 235, 235, 166, 86]. Both only consider basic change
primitives like the insertion or deletion of single nodes and edges.

Answering the above research question will lead to better cost efficiency when
re-designing process models, since the efforts to implement the corresponding
changes in the supporting PAIS are minimized. At the process instance level,

49

CHAPTER 5. MEASURING PROCESS MODEL SIMILARITY BASED ON
HIGH-LEVEL CHANGE OPERATIONS

this way we can reduce the efforts to propagate process type changes to the
running instances [154, 147]. Finally, the derived differences between original
process model and its process instances can be used as a set of pure and concise
change logs (cf. Def. 6) for process change mining [62].

In Chapter 2, we have provided the technical foundation for users to flexibly
change process models at both the process type and the process instance level.
For example, users may dynamically insert, delete or move an activity at both
levels [141]. In addition, snapshot differential algorithms [93, 30], as known from
database technology, can be used as a fast and secure method to detect the
change primitives (e.g. to add or delete nodes and edges) needed to transform
one process model into the other.

Using the ADEPT change framework and snapshot differential algorithm, this
chapter applies Digital Logic in Boolean Algebra [23] to provide a new method
to transform a process model into another one based on high-level change oper-
ations. This method does not only minimize the number of changes needed in
this context, but also guarantees soundness of the changed process model after-
wards, i.e., the process model remains correct when applying high-level change
operations.1We further provide two measures – process distance and process sim-
ilarity – based on high-level change operations, which indicate how costly it is
to transform process model S into model S′, and how different S and S′ are.

The remainder of this chapter is organized as follows: Section 5.2 first provides
a general description of our approach. Section 5.3 describes required insert and
delete operations for transforming a process model into another, while Section
5.4 computes the number of move operation. Finally Section 5.5 concludes with
a summary.

5.2 General Description of our Comparison Method

We first introduce our method to detect the minimal number of change operations
needed to transform a given process model S into another model S′. As example,
consider the process models S and S′ in Fig. 5.1. As mentioned in Section 5.1, the
key issue is to minimize the number of change operations needed to transform
a process model S ∈ P into another model S′ ∈ P. Let T = (N,C, CT, E, l)
and T ′ = (N ′, C ′, CT ′, E′, l ′) be the corresponding process structure tree of S
and S′. Generally, three steps are needed (cf. Fig. 5.1) to realize this minimal
transformation:

1. ∀ni ∈ N \N ′: delete all nodes that are present in T , but are not contained
in T ′. This first step transforms the corresponding process models S to
Ssame (cf. Fig. 5.1b).

2. ∀ni ∈ N
⋂

N ′: move all nodes that are contained in both process structure
trees to the locations as reflected by T ′. Regarding our example, this second

1Note that this can be ensured for the control flow perspective. However, to also ensure
correction of data flow or other process aspects, additional checks become necessary.

50

5.2. GENERAL DESCRIPTION OF OUR COMPARISON METHOD

S: original process model S’: destination process model
Ssame: original model with shared activities S’same: destination model with shared activities

Step1: delete Transform
S to S’

Step2: move
Step3: inserta)b) c)d)

E F
G

C D
A X B

E F

G

C D

A B

C F

GD
A

B
Y

EZ

C

E

F

GD
A

B

Figure 5.1: Three Steps to Transform S into S′

step transforms the corresponding process model Ssame to S′same (cf. Fig.
5.1c).

3. ∀ni ∈ N ′ \ N : insert those activities which are contained in T ′, but not
in T . As depicted in Fig. 5.1, the third step transforms the corresponding
process model S′same to S′ (cf. Fig. 5.1d).

Note that the aforementioned three steps were described based the node sets
N and N ′ in the corresponding process structure tree. Reason is that we want
to ignore the silent activities which were often introduced during process trans-
formations (cf. Chapter 4). Insertions and deletions deal with changes of a set
of activities. Here, we can hardly do anything to reduce efforts (i.e., to reduce
the number of required insert operation and delete operations respectively): New
activities (ai ∈ N ′ \N) must be added and obsolete activities (aj ∈ N \N ′) be
deleted.

The focus of minimality can therefore be shifted to the use of the move opera-
tion, which changes the structure of a process model, but not its set of activities.
Since a move operation logically corresponds to a delete operation followed by
an insert operation, we can transform Ssame to S′same by maximally applying
n = |N ⋂

N ′| move operations. Reason is that n move operations correspond to
deleting all activities and then re-inserting them at their new positions. Corre-
spondingly, n is the maximum number of change operations needed to transform
one process model into another, both with same set of activities (Ssame and S′same

in our example from Fig. 5.1). To measure the complete transformation from S
to S′, we formally define process distance, bias and process similarity as follows:

Definition 9 (Process Distance, Bias and Similarity)
Let S, S′ ∈ P be two process models, and let T = (N, C,CT, E, l), T ′ =

51

CHAPTER 5. MEASURING PROCESS MODEL SIMILARITY BASED ON
HIGH-LEVEL CHANGE OPERATIONS

(N ′, C ′, CT ′, E′, l) be their corresponding process structure trees. Let further
σ = 〈∆1,∆2, . . . ∆n〉 ∈ C∗ be a sequence of change operations transforming S
into S′ (i.e. S[σ〉S′).

1. Distance d(S,S′) between S and S′ corresponds to the minimal number of
high-level change operations needed to transform S into S′; i.e., we define

d(S,S′) = min{|σ|
∣∣ σ ∈ C∗ ∧ S[σ〉S′}

¨
§

¥
¦5.1

2. A sequence of change operations σ with S[σ〉S′ and |σ| = d(S,S′) is denoted
as a bias between S and S′.

3. At last, let m = |N | + |N ′| − |N ⋂
N ′| be the maximal number of change

operations needed to transform S into S′. Then process similarity between
S and S′ equals to

m−d(S,S′)
m , i.e., similarity equals to ((maximal number of

changes - minimal number of changes) / maximal number of changes).

Generally, it is possible to have more than one minimal sequence of change op-
erations to transform S into S′, i.e., given process models S and S′ their bias
does not need to be unique. A detailed discussion of this issue can be found in
[191, 187].

5.3 Determining Required Activity Deletions and In-
sertions

To accomplish Step 1 and Step 3 of our approach (cf. Section 5.2), we have to deal
with the change of the activity set when transforming S into S′. It can be easily
detected by applying existing snapshot algorithms [93, 30] to both S and S′. As
described in Section 5.2, as first step we need to delete all activities ai ∈ N \N ′

that are contained in S, but not in S′. Regarding our example from Fig. 5.1, we
can derive as our first high-level change operation ∆1 = delete(S, X). Similarly,
activities that are contained in S′, but not in S, are inserted in Step 3, after having
moved the commonly shared activities to their respective position in S′ (S′same

respectively). The parameters of the insert operation, i.e., the predecessors and
successors of the inserted activity can be identified in S′. In this way, we obtain
the last two change operations for our example: Insert(S, Y, StartLoop, {A, B})
and Insert(S, Z, D, E).

5.4 Determining Required Move Operations

We now focus on Step 2 of our method; i.e., to transform two process models with
same activity set by applying move operations. Here, we can ignore the activities
which are not contained in both models, i.e., in S and S′ (cf. 5.3). Instead, we

52

5.4. DETERMINING REQUIRED MOVE OPERATIONS

consider the two process models Ssame and S′same, respectively, as depicted in
Fig. 5.1.

We revisit our example from Fig. 5.1. The order matrices of Ssame and S′same

are depicted in Fig. 5.2. Note that both Ssame and S′same contain a silent activity
τ , which represents the loop structure (cf. Def. 8). When comparing two process
models, it is sufficient to compare their order matrices (cf. Def. 8), since an
order matrix can uniquely represent the process model (cf. Chapter 4). This also
means that the differences of two process models can be related to the differences
of their order matrices. If two activities have different execution order in two
process models with same activity set, a conflict can be defined as follows:

Definition 10 (Conflict) Let S, S′ ∈ P be two sound and block-structured pro-
cess models and. Let further T = (N, C,CT, E, l), T ′ = (N ′, C ′, CT ′, E′, l ′) and
A, A′ be the corresponding process structure trees and order matrices for S and
S′ respectively. In this context, we have N = N ′. Then: Activities ai and aj are
conflicting iff Aij 6= A′ij. We formally denote this as C(ai,aj). CF := {C(ai,aj)

| ai, aj ∈ N∧ Aij 6= A′ij} then corresponds to the set of all conflicts existing
between S and S′.

Fig. 5.2 marks up differences between the two order matrices in grey. The set
of conflicts is as follows: CF = {C(A,B), C(C,D), C(C,F), C(D,E), C(D,F), C(E,F)}.

Order Matrix Ssame Order Matrix S’same

The first group of activities and conflicts

The second group of activities and conflicts

A BAB

C D E FCDEF

A
A
B

B C D E F G

C
D
E
F
G

11 1 1 11 1 1 1 11 11 1 1 1110 0 00 00 0 00 00 0 0 00 0 0 0+

+
-

-

+
+

τ

τLL00000L L 11 1 1 1
A

A
B

B C D E F G

C
D
E
F
G

11 1 1 11 1 1 1 111110 00 00 00 00 0 0 0 0 0-
10 1 + +

+ +1+ +
+ + 00

τ

τ

L L
LL

11 1 1 1
00000

Figure 5.2: Order Matrices of Ssame and S′same from Fig. 5.1

53

CHAPTER 5. MEASURING PROCESS MODEL SIMILARITY BASED ON
HIGH-LEVEL CHANGE OPERATIONS

5.4.1 Optimizing the Conflicts

To evolve Ssame into S′same (cf. Fig. 5.1), we have to eliminate conflicts between
these two models by applying move operations. Obviously, if there is no conflict
for the two models, they will be identical. Every time we move an activity from
its current position in Ssame to the position it has in S′same we can eliminate the
conflicts this activity has with other activities. For example, consider activity
A in Fig. 5.1. If we move A from its position in Ssame (preceding B) to its new
position in S′same (A and B are contained in two different branches of a conditional
branching block) we can eliminate conflict C(A,B).

As shown in the order matrices, moving A requires two steps. First, we have
to set the elements in the first row and first column of An×n (which corresponds
to activity A) to empty, since A is moved away. Second, we have to reset these
elements according to the new order relation of A in comparison to the other
activities from S′same. So every time we move an activity, we are able to change the
value of its corresponding row and column in the order matrices, i.e., we change
these values corresponding to the original model to the values being compliant
with the target model. By doing this iteratively, we can change all the values
and eliminate all the conflicts so that we finally achieve the transformation from
Ssame to S′same.

A non-optimal solution would be to move all the activities involved in the
conflicts, as set out by CF , from their positions in Ssame to the positions they
have in S′same. Regarding our example from Fig. 5.2, in order to apply this
straightforward method, we would need to move activities A, B, C, D, E and F
from their positions in Ssame to the ones in S′same. However, this naive method
is not in line with our goal to minimize the number of applied change operations.
For example, after moving activity A from its current position in Ssame to the
position it has in S′same, we do not need to move activity B anymore. Note that
after applying this change operation, there are no activities with which activity
B still has conflicts.

Digital logic in Boolean algebra [23] helps to solve this minimization problem.
Digital logic constitutes the basis for digital electronic circuit design and opti-
mization. In this field, engineers face the challenge to optimize the internal circuit
design given the required input and output signals. To apply such technique in
our context, we consider each process activity as an independent input signal.
We want to design a circuit which can cover all conflicts defined by CF (cf. Def
10). If activity ai conflicts to activity aj , we can either move one of them or both
of them from the positions they have in Ssame to the ones they have in S′same.
Doing so, the conflict will not exist anymore. Reason is that every time we move
an activity from the position it has in Ssame to the position it has in S′same, we
reset the corresponding row and column of this activity in the order matrix. A
conflict can be interpreted as a digital signal: When the two input signals ai and
aj are both ”true”(this means we do not move activities ai and aj), we cannot
solve the conflict and the ’circuit’ shall give an output signal of ”false”. If we
apply this to all conflicts in CF , we will obtain all ”false” signals. Meanwhile,

54

5.4. DETERMINING REQUIRED MOVE OPERATIONS

the ”circuit” should be able to tell us what will result in a ”true” output (i.e.,
the negative of all ”false” signals). This ”true” output expresses which activities
we need to move. Regarding our example from Fig. 5.2, given the set of conflicts
CF , our logic expression then is as follows: AB + CD + CF + DE + DF + EF.

The complexity for optimizing the logic expression isNP-hard [23]. Therefore
it is advantageous to reduce the size of the problem. Concerning our example,
we can cut down the optimization problem into two groups: one with activities
A and B, as well as conflict C(A,B); another one with activities C, D, E and F, as
well as the following set of conflicts: {C(C,D), C(C,F), C(D,E), C(D,F), C(E,F)}. Such
division can be achieved in O(n) time by applying the following three steps.

� Step 1: List all conflicting activities, and consider each activity as an inde-
pendent group.

� Step 2: If conflicting activities ai and aj (i.e., C(ai,aj)) are contained in two
different groups, merge these two groups.

� Step 3: Repeat Step 2 for all conflicts in CF .

After applying these three steps, we can divide the activities as well as the
associated conflicts into several groups. Regarding our example, the optimization
problem can be divided into two sub-optimization problems: AB and CD + CF + DE + DF + EF.
We depict this by the two small matrices in Fig. 5.2.

Optimizing logic expressions has been intensively discussed in Discrete Math-
ematics. Therefore we omit details here and refer to Karnaugh map [23, 120]
and Quine-McCluskey algorithm [23, 36]. We have implemented the latter in our
proof-of-concept prototype. Regarding our example in Fig. 5.1, the two opti-
mization results are AB = Ā+ B̄ for the first group and CD + CF + DE + DF + EF =
D̄F̄ + C̄ĒF̄ + C̄D̄Ē for the second group. We can interpret this result as follows.
For the second group, either we move activities D and F, or we move activities
C, E and F, or we move activities C, D and E from their position in Ssame to the
positions they have in S′same. Based on this we can transform Ssame into S′same

since all conflicts are eliminated. As can be seen from the order matrices, if we
change the value of the corresponding rows and columns of these activities in
Ssame, we can turn Ssame into S′same. Since we want to minimize the number
of change operations, we can draw the conclusion that activities D and F must
be moved. Same rule applies to the result of the first group. However, there is
no difference whether to move either A or B since both operations count as one
change operation. Here, we arbitrarily decide to move activity B.

So far we have determined the set of activities to be moved. The next step is
to determine the positions where these activities need to be moved to. Operation
move(S, X,A,B, [sc]) will be independent from other move operations (i.e., it
does not matter in which order to move the respective activity) if its direct
predecessors A and direct successors B do not belong to the set of activities to be
moved. Regarding our example from Fig. 5.1, activity F satisfies this condition
since its predecessor C and its successor G are not moved. Same results applies

55

CHAPTER 5. MEASURING PROCESS MODEL SIMILARITY BASED ON
HIGH-LEVEL CHANGE OPERATIONS

E F

G

C D

A B

C

E

F

GD
A

B

Ssame S’same
Move(S,D,EndLoop, {C,E})

move(S,B, StartLoop, EndLoop, XOR)
Move(S, F, C, G)a)b) c)d)

E F

GD

C

A B

E

C

F

GD
A

B

Figure 5.3: Process models after every move operation

to D while its predecessor EndLoop and successors C and E are not changed. Note
that since activity B is moved to a position where it forms an XOR block with
activity A, two silent activities denoting the XOR-split and XOR-join have been
automatically inserted. A detailed discussion can be found in [141].

According to the position the moved activities have in S′same, we can determine
the parameters (i.e., the predecessors, successors and conditions) for every move
operation. In S′same, activity D has predecessors EndLoop, and successors E and
C. So one move operations therefore is move(S, D, EndLoop,{C,E}). Similarly,
we obtain the other two move operations: move(S, B,EndLoop,StartLoop, [sc])
and move(S, F,C,G). The intermediate process models resulting after every move
operation are shown in Fig. 5.3. When comparing order matrices for each model
in Fig. 5.3, it becomes clear that every move operation changes the values of the
row and the column corresponding to the moved activity.

5.4.2 Distance and Similarity between other Models

The method described in Section 5.4 has been tested and implemented in the
ADEPT framework, and will be used in the following chapters. Taking our exam-
ple from Fig. 5.1 (i.e., to transform S into S′), the following six change operations
are required: σ = {delete(S, X), move(S, F,C,G), move(S,
D,{A,B},{C;E}), move(S, B,StartFlow,D,XOR), insert(S, Y,StartFlow,{A,B}),
and insert(S, Z,D,E) }. Distance between the two models is six, bias is σ and
similarity is 0.4 (cf. Def. 9). To illustrate our method and these numbers in
more detail, we compare the distances and similarities between the seven pro-
cess models discussed so far: S, S1 and S2 from Fig. 3.2 and S, Ssame, S′same

and S′ from Fig. 5.1. Distance and similarity of two models are specified as
distance/similarity in each corresponding cell in Fig. 5.1. As the transforma-

56

5.5. SUMMARY

tion is commutable, we only fill in the upper triangle matrix. Taking Fig. 5.1,
we can conclude:

Figure 5.1 Figure 5.3
S Ssame S′same S′ SI1 SI2

S 0 / 100% 1 / 89% 4 / 56% 6 / 45% 2 / 78% 3 / 67%
Figure Ssame 0 / 100% 3 / 63% 5 / 50% 1 / 88% 2/ 75%

5.1 S′same 0/ 100% 2 / 80% 2 / 75% 1/ 88%
S′ 0 / 100% 4 / 60% 3/ 70%

Figure SI1 0 / 100% 1 / 88%
5.3 SI2 0 / 100%

Table 5.1: Distance and similarities of different process models

1. Changing the activity set always leads to a modified distance. For example,
d(Sn,S′same) always equals d(Sn,S′) + 2, where Sn stands for a process model
other than S′ or S′same in Fig. 5.1. Reason is that S′ contains two unique
activities Y and Z when compared to S′same, while the rest are identical.

2. If three process models S, S′, and S′′ have same activity sets, we will
obtain d(S,S′′) ≤ d(S,S′) + d(S′,S′′). It is easy to understand this because
some activities could be moved twice when transforming S into S′ and S′

into S′′.

5.5 Summary

We provided a method to quantitatively measure the distance and similarity
between two process models based on the efforts for model transformation. High-
level change operations are used to evaluate the similarity since they guarantee
soundness and also provide more meaningful results. We further applied digital
logic known from Boolean algebra such that the number of change operations
required to transform process model S into process model S′ becomes minimal.

In the following chapters, we will apply respective distance and similarity
measures in the context of algorithms we developed for process variant mining.

57

6
Mining Process Variants Using a

Clustering Technique

6.1 Introduction

Though considerable efforts have been made to ease process configuration and
adaptation [66, 141, 165], we have not utilized the knowledge resulting from these
process model changes yet [213]. Fig. 6.1 describes the goal of this chapter as it
has been already motivated in Chapter 1. We aim at learning from past process
changes by ”merging” existing process variants into one generic process model,
which ”covers” these variants best. Thereby we do not presume any knowledge
of the original reference model the variants were derived from. By adopting this
generic model as reference process model within the PAIS, cost of change and
need for future process adaptations will decrease. Chapter 6 deals with our third
research question (cf. Section 1.2):

Given a collection of process variants, how can we discover a reference process
model in such a way that average distance between it and the process variants
becomes minimal?

The distance between reference process model and process variant is measured
in terms of the number of high-level change operations (e.g., to insert, delete or
move activities [141]) needed to transform the reference model into the respective
variant model (cf. Def. 9). Change distance directly represents the efforts needed
for process adaptation and customization, and average change distance between a
reference model and a collection of process variants directly measures the config-
uration efforts for a particular reference process model. Obviously, the challenge
is to find the ”best” reference model, i.e., the one with minimal average distance
to the known variants. Note that we only need a collection of process variants
as input of our analysis. In particular, we do not require a change log (cf. Def.
6) as input, which specifically documents all change operations performed during
the configuration of process variants [61, 62]. In fact, even the original reference
process model from which the variants were derived is not really required. In the
following we present a clustering technique to deal with these challenges.

The remainder of this chapter is organized as follows. Section 6.3 presents

59

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

…

reference process model S
customization & adaptation

process variant S1 process variant S2 process variant Sn
mining & learning reference process model

S’ as learned from process variants

feedback evaluation

Figure 6.1: Mining a new reference model

our basic clustering algorithm for mining process variant models having same
activity set. Section 6.4 extends it such that variants with different activity sets
can be considered as well. We apply simulations to systematically evaluate the
performance of our algorithm in Section 6.5. Finally, we conclude with a summary
in Section 6.6.1

6.2 Illustrative Example

To illustrate our mining approach, Fig. 6.2 depicts an example comprising six
different process variants Si ∈ P (i = 1, 2, . . . 6) and being based on common
workflow patterns like AND-split, AND-join, XOR-split, XOR-join, and Loop
[193]. Note that these variants do not only differ in structure, but also in respect
to their activity sets. For example, activity X appears in 5 out of the 6 variants
(except S2), while activity Z only appears in S5. Furthermore the six variants
are weighted. In the context of our work, we define the weight wi of a process
variant Si as the number of process instances that were executed on basis of Si.
In our example, 25 instances were executed on basis of process variant S1, while
20 instances ran on S2. If we only know the process variants, but have no runtime
information about related instance executions, we could assume variants to be
equally weighted; i.e., every process variant will then have weight 1.2

1A case study in which we applied our algorithm in practice is presented in Chapter 9.
2Note that in this context, the weight wi of a variant Si only reflects the frequency with

which Si was executed. We do not consider which path was taken when executing a process
model, or in which order activities were executed in each process instance (cf. Section 2.1.3).
Note that this is different to process mining techniques (cf. Section 2.5) which are often based
on trace analyses (cf. Def. 4).

60

6.3. CLUSTERING APPROACH FOR DISCOVERING REFERENCE
PROCESS MODELS

In Section 6.3 we first assume that all process variants have same activity
sets, i.e., we focus on activities A,B,C,D,E,F,G,H,I and J, which exist in all six
process variants S1 - S6, but have different order relations. In Section 6.4, we
relax this constraint and extend our algorithm to deal with activities that do not
appear in all process variants as well.

S1 S2
S3 S4
S5 S6E Y B JGI HC Z D

AFX

G
E BAF IX JDCHG

Y HC D BIE JAFX
D
AF IE B
Y

J
GC H

E B
Y

JGI H C D
AFX

Weight: w1 = 25
Weight: w3 = 10
Weight: w5 = 20

Weight: w2 = 20
Weight: w4 = 15
Weight: w6 = 10

GH C DE B IJAFX

Figure 6.2: Illustrative example

6.3 Clustering Approach for Discovering Reference
Process Models

We now present a clustering-based algorithm for mining a collection of process
variants. Our goal is to derive a new reference model out of a given collection
of process variants which is easier configurable than the current one. Since we
restrict ourselves to block-structured process models, we can build the new refer-
ence model by enlarging blocks, i.e., we first identify two activities that can form
a block, then we merge this block with other activities and blocks respectively to
form a larger block, and so forth. This procedure continues until all activities and
blocks respectively are merged into one single block. This block and its internal
structure then represent the new reference process model we are looking for.

Basically, our clustering approach for mining process variants works as follows:

1. For all process variants calculate their order matrices (cf. chapter 4). Ag-
gregate them to one high-dimensional matrix representing all variants (cf.

61

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

Section 6.3.1).

2. Based on this high-dimensional matrix, determine activities to be clustered
in a block (cf. Section 6.3.2).

3. Determine the order relation the clustered activities shall have within this
block (cf. Section 6.3.3).

4. After building a new block in Steps 2 and 3, reflect on the clustering of the
activities by adjusting the high-dimensional matrix accordingly (cf. Section
6.3.4).

5. Repeat Steps 2, 3 and 4 until all activities are clustered together; i.e., until
the new process model has been constructed by enlarging blocks.

6.3.1 Representing a Collection of Process Variants as Ag-
gregated Order Matrix

For each variant of the given collection of process variants, we first compute its
order matrix (cf. Def. 8 in Chapter 4). Regarding our example from Fig. 6.2,
we need to determine six order matrices, which are shown on top of Fig. 6.3.
Afterwards, we analyze the order relation for each pair of activities considering
all order matrices derived before. In this context, we consider activities from
different variants are the same if they have the same label.3 As the order relation
between two activities might not always be the same in all order matrices, this
analysis does not result in a fixed relationship, but provides a distribution for the
five types of order relations (cf. Def. 8). Regarding our example, for instance,
in 50% of all cases activity H is a successor of activity C (as in S2, S3 and S5),
in 25% of all cases H precedes C (as in S4 and S6), and in 25% of a cases H and
C are contained in different branches of an AND block (as in S1) (cf. Fig. 6.3).
Generally, we can define the order relation between two activities a and b as
5-dimensional vector Vab = (v0

ab, v
1
ab, v

+
ab, v

−
ab, v

L
ab). Each field then corresponds to

the frequency of the respective relation type (’0’, ’1’, ’+’, ’-’ or ’L’) as specified
in Def. 8.

Take again our running example and consider Fig. 6.3. Here, v0
HC corresponds

to the frequency of all cases with activities H and C having order relationship ’0’,
i.e., all cases for which H succeeds C; we obtain VOQ = (0.5, 0.25, 0.25, 0, 0).

Formally, we define an aggregated order matrix as follows:

3Otherwise, we refer to [44] for an approach that matches activities from different process
models in case they have different labels. Note that we can also use this technique to handle
silent activities which represent the loop structures in a process structure tree. When there are
multiple silent activities in each of the process structure trees, we can map these silent activities
based on their context (e.g., their relationship to other activities). In the following, we assume
that such mapping between activities (including silent ones) in different process structure trees
has already been established and we can map them simply based on their labels.

62

6.3. CLUSTERING APPROACH FOR DISCOVERING REFERENCE
PROCESS MODELS

Definition 11 (Aggregated Order Matrix) Let Si ∈ P, i = 1, 2, . . . , n be a
collection of process variants. Let further Ti = (Ni, Ci, CTi, Ei, li) and Ai be the
process structure tree and the order matrix of Si, and wi be the number of process
instances that were executed on Si. The Aggregated Order Matrix of all pro-
cess variants is defined as 2-dimensional matrix Vm×m with m = |⋃ Ni| and each
matrix element vajak

= (v0
ajak

, v1
ajak

, v+
ajak

, v−ajak
, vL

ajak
) being a 5-dimensional

vector. For 3 ∈ {0, 1, +,−, L}, element v3ajak
expresses to what percentage, ac-

tivities aj and ak have order relation 3 within the collection of process variants
S1, . . . , Sn. Formally: ∀aj , ak ∈

⋃
Ni, aj 6= ak :

v3ajak
=

∑
Aiajak

=′3′ wi

∑
aj ,ak∈Ni

wi
.

¨
§

¥
¦6.1

The aggregated order matrix V of the process variants from Fig. 6.2 is shown
in Fig. 6.3. Due to space limitations we only show a partial view of the order
matrices here (i.e., activities A, B, C, F, H, I and J). Generally, the main
diagonal of an aggregated order matrix is always empty since we do not specify
the order relation of an activity with itself.

In Chapter 4 we have shown that we can transform an order matrix into a
process model by identifying blocks: i.e., two activities can be clustered into a
block if they have same order relation with respect to other activities. As we will
show, a similar idea can be applied when analyzing an aggregated order matrix.
Our goal is to derive an optimal reference process model for the given variants
based on this representation form.

6.3.2 Determining the Activities to be Clustered

This subsection describes how we derive the blocks for the reference model to be
discovered from an aggregated order matrix, i.e., from a collection of process vari-
ants. There are two fundamental issues we have to consider in this context. First,
we have to decide which activities (and blocks respectively) shall be ”blocked”.
Second, we must choose an order relation for them. This subsection deals with
the first issue, the second one is addressed in Section 6.3.3.

Regarding an order matrix two activities can be clustered in a block if they
have same order relations with respect to the other activities (cf. Chapter 4). We
can apply a similar idea when analyzing an aggregated order matrix. However,
the relationship between two activities in an aggregated order matrix is expressed
as 5-dimensional vector showing the distribution of the order relations over all
process variants. When determining pairs of activities that can be clustered in a
block, it would be too restrictive to require precise matching as in the case of an or-
der matrix. To deal with this, we first introduce function f(α, β) which expresses
the closeness between two vectors α = (x1, x2, ..., xn) and β = (y1, y2, ..., yn):

f(α, β) =
α · β

|α| × |β| =
∑n

i=1 xiyi√∑n
i=1 x2

i ×
√∑n

i=1 y2
i

¨
§

¥
¦6.2

63

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

‘0’
 : s

uc
ce

ss
or

‘1’
 : p

red
ec

es
so

r
‘+’

 : A
ND

-bl
oc

k
‘-’

: X
OR

-bl
oc

k

0
1

+
-

L

‘L’
 : L

oo
p-b

loc
k

01 000 00 010 00 00.850.15 00.1 000.9

00 010
01 000

00 010 00.25 0.2500.5 00.3 00.150.55 00 010

00 010 00 010

00 010 00 00.850.15 00 001

00 010 00 001 00 100
00 010
00.6 00.150.25 00 010

00.5 0.2500.25 00 010 00 010
00.15 00.850 00.25 00.150.6
00 010

00.55 00.150.3 00.15 00.850 00.15 00.850
01 000 00 010 00 010
00 010 00.9 000.1 01 000

00 100 00 010 00 00.850.15 00 001

00 010 00 001

A
B

C
F

H
I

J

A B C F H I J

VHC= (0.5,
0.2

5,
0.2

5,
0,

0)

‘0’

‘1’

‘+’

‘-’

‘L’

V

S 1:25%
S 2:20%

S 3:10%
S 4:15%

S 5:20%
S 6:10%

Order matrices

Aggregated order matrix

A
B

C
F

H
I

J
A

1
-

+
-

-
1

B
0

-
0

-
-

1
C

-
-

-
+

1
-

F
+

1
-

-
-

1
H

-
-

+
-

1
-

I
-

-
0

-
0

-
0

0
-

0
-

-
J

A
B

C
F

H
I

J
A

1
-

+
-

-
1

B
0

-
0

-
-

1
C

-
-

-
1

1
-

F
+

1
-

-
-

1
H

-
-

0
-

0
-

I
-

-
0

-
1

-
0

0
-

0
-

-
J

A
B

C
F

H
I

J
A

1
-

+
-

-
1

B
0

-
0

-
-

0
C

-
-

-
1

1
-

F
+

1
-

-
-

1
H

-
-

0
-

0
-

I
-

-
0

-
1

-
0

1
-

0
-

-
J

A
B

C
F

H
I

J
A

1
-

+
-

1
1

B
0

-
0

-
1

1
C

-
-

-
0

-
-

F
+

1
-

-
1

1
H

-
-

1
-

-
-

I
0

0
-

0
-

-
0

0
-

0
-

-
J

A
B

C
F

H
I

J
A

1
-

+
-

-
1

B
0

-
0

-
-

1
C

-
-

-
1

0
-

F
+

1
-

-
-

1
H

-
-

0
-

0
-

I
-

-
1

-
1

-
0

0
-

0
-

-
J

A
B

C
F

H
I

J
A

1
-

+
-

-
1

B
0

-
0

-
-

1
C

-
-

-
0

0
-

F
+

1
-

-
-

1
H

-
-

1
-

0
-

I
-

-
1

-
1

-
0

0
-

0
-

-
J

: 5
0%

: 2
5%

: 2
5%

: 0
%

: 0
%

Figure 6.3: Aggregated order matrix V

f(α, β) ∈ [0, 1] computes the cosine value of the angle θ between vectors α and
β in Euclid space. If f(α, β) = 1 holds, α and β exactly match in their directions;
f(α, β) = 0 means, they do not match at all. When comparing closeness between
vHC = (0.5, 0.25, 0.25, 0, 0) and vIC = (0.55, 0.3, 0, 0.15, 0), for example, we obtain
f(vHC, vIC) = 0.887. This high value implies that the two vectors are close to each

64

6.3. CLUSTERING APPROACH FOR DISCOVERING REFERENCE
PROCESS MODELS

other though they are not the same.
Using f(α, β) we introduce the Separation metrics. It indicates to what

degree two activities of an aggregated order matrix are suited for being clustered
in a block. More precisely, Separation(a, b) expresses how similar order relations
of activities a and b are when compared to the other activities. In our example
from Fig. 6.2, Separation(A,B) is determined by the closeness (measured in
terms of the cosine value) of f(vAC, vBC), f(vAD, vBD), f(vAE, vBE), . . ., f(vAI, vBI)
and f(vAJ, vBJ). Generally, we define cluster separation as follows:

Separation(a, b) =

∑
x∈N\{a,b} f2(vax, vbx)

|N | − 2

¨
§

¥
¦6.3

N corresponds to the set of activities. Like most clustering algorithms [181],
we square the cosine value to emphasize the differences between the two com-
pared vectors. Finally, dividing this expression by |N | − 2 normalizes its value
to a range between [0, 1]. Regarding our example from Fig. 6.2, we obtain
Separation(A,B) = 0.776. This separation value indicates that activities A and
B has relatively high similarity regarding their order relations to the remaining
activities (relatively high chance of forming same block).

We determine the pair of activities best suited to form a block by measuring
how much each activity pair is separated from the other activities. We accomplish
this by computing the separation value for each activity pair. The higher this
value is, the better the two activities are suited for being clustered. Fig. 6.4
depicts the separation values for our running example from Fig. 6.2. We denote
this table as separation table. Obviously, activities A and F have the highest
separation value of 1 (marked up in grey color in Fig. 6.4). We therefore choose
A and F as the activities forming our first block.4 Since Separation(A,F) = 1
holds, A and F can form a block also in all six process variants. We obtain same
results when directly analyzing the variants (cf. Fig. 6.2).

6.3.3 Determining the Internal Order Relations

After having decided that activities A and F are clustered in the first block, we
have to determine the order relation these two activities shall have. In addition,
we measure how good our choice is. For this purpose, we introduce Cohesion as
measure which indicates how significant particular order relations between two
activities of the same cluster are.

In the aggregated order matrix of our running example, the relationship be-
tween activities A and F is depicted as 5-dimensional vector vAF = (0, 0, 1, 0, 0).
It shows the distribution values of the five types of order relations. Obviously,
when building a reference process model, only one of the five order relations
can be chosen. Therefore, we want to choose that type of order relation which

4However, when dealing with more complex examples, there can be several maximal separa-
tion values. For this case, we compute cohesion values (cf. Section 6.3.3) between the pairs with
the highest separation values. As result, the pair with highest cohesion should be selected, since
the relationship of the respective two activities (measured by the cohesion) is most significant.

65

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

A B C D E F

B .776
C .016 .016
D .022 .022 .960
E .778 .665 .016 .022
F 1.0 .776 .016 .022 .778.046 .046 .788 .749 .046 .046G

Highest
separation value
for A and F

...

...

.
.
.

Figure 6.4: Separation table of aggregated order matrix

is most significant. Regarding our example, the significance of each order re-
lation can be evaluated by the closeness vector vAF and the five axes in the 5-
dimensional space have. These axes can be represented by five benchmarking vec-
tors: v0 = (1, 0, 0, 0, 0), v1 = (0, 1, 0, 0, 0), v+ = (0, 0, 1, 0, 0), v− = (0, 0, 0, 1, 0),
and vL = (0, 0, 0, 0, 1). Based on this, we can compute the significance of each
order relation using formula f(α, β) (cf. Section 6.3.2), where α = vPQ and β is
one of the five benchmarking vectors. Regarding our example, the closest axis to
vPQ is v+ (with f(vAF, v+) = 1). Therefore, we decide that A and F shall form an
AND block (cf. Def. 8).

We use Cohesion to evaluate how good our choice is:

Cohesion(a, b) =
max3={0,1,+,−,L}{f(vab, v

3)} − 0.4472
1− 0.4472

¨
§

¥
¦6.4

The value range of max3={0,1,+,−,L}{f(vab, v
3)} is [0.4472,1]. We use Formula

6.4 to normalize Cohesion(a, b) into value range [0,1]. Cohesion(a, b) equals
one if there is a dominant order relation, i.e., vab is on one of the five axes.
Cohesion(a, b) equals zero if vab is (0.2, 0.2, 0.2, 0.2, 0.2), i.e., no order relation is
more significant than the others. Regarding our example, Cohesion(A,F) equals
1. This indicates that A and F have order relation ’+’ in all six process variants;
we can obtain same results by directly analyzing the variants (cf. Fig. 6.2).

6.3.4 Recomputing the Aggregated Order Matrix

We have discovered the first block of our reference process model, which contains
A and F. We have further decided that A shall precede F, and that the significance
of this order relation is 1. We now have to decide on the relationship between the
newly created block (comprising A and F) and the other activities. This requires
the adaptation of the original aggregated order matrix in order to represent the

66

6.3. CLUSTERING APPROACH FOR DISCOVERING REFERENCE
PROCESS MODELS

situation in which A and F are clustered in a block.5 We accomplish this adap-
tation by computing the means of the order relations between {A, F} and the
remaining activities. For example, as vAB = (0, 1, 0, 0, 0) and vFB = (0, 1, 0, 0, 0),
the order relation between the newly created block (A,F) and activity B cor-
responds to (vAB + vFB)/2 = (0, 1, 0, 0, 0).6 Such computation is applied to all
remaining activities outside this block.

Generally, after clustering activities a and b, the new aggregated order matrix
V ′ can be calculated as follows:

∀x ∈ N \ {a, b} :

{
v′(a,b)x = (vax + vbx)/2
v′x(a,b) = (vxa + vxb)/2

¨
§

¥
¦6.5

∀x, y ∈ N \ {a, b} : v′xy = vxy

¨
§

¥
¦6.6

The aggregated order matrix V ′ we obtain after clustering A and F is shown
in Fig. 6.5. Since A and F are replaced by a block {A,F} containing these two
activities, the matrix resulting after the re-computation is one dimension smaller
than V . Afterwards, we treat this block like a single activity, but keep its internal
structure in order to build up the new reference process model at the end.

6.3.5 Mining Result

After obtaining the newly aggregated order matrix, we repeat the three steps
as described in Sections 6.3.2, 6.3.3 and 6.3.4; i.e., we first identify the two ac-
tivities (and blocks respectively) to be clustered next, then we determine their
order relation within the block, and finally we re-compute the aggregated order
matrix considering the newly determined block. In every iteration, we merge two
activities and blocks respectively into one bigger block. This iterative clustering
continues until all activities from the original aggregated order matrix are clus-
tered. Finally, we obtain our new reference process model. Obviously, the number
of required iterations equals the number of activities minus one. Regarding our
running example, Fig. 6.6 depicts the final result S′ we obtain after running
through all iterations of our clustering algorithm.

Fig. 6.6 does not only show process model S′, which we have discovered
through the mining of the variants from Fig. 6.2, but also the intermediate
results we obtain after every iteration (indicated through number at the right-
bottom corner of each block). In iteration 1, for example, A and F are clustered to
form a block. In the second iteration, this block is merged with activity B as its

5Our approach is different to traditional clustering algorithms [181], in which only distances
are re-computed, but not the original dataset.

6This approach is an unweighted one; i.e., we simple take the average of the two vectors
without considering their importance; e.g., how many activities are included in the block. In
this way, we can ensure that when merging two blocks of different sizes, the order relations of
the resulting block are not too much dominated by the bigger one. Such unweighted approach
is widely used in other clustering approaches [181].

67

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

000 10 000 0.850.15 00.10 00.9000 10010 00 00.250.25 00.5 00.30 0.150.55 000 10000 10000 10 00.60 0.150.25 000 1000.50.25 00.25000 10000 10 00.250 0.150.6 000 1000.550 0.150.300.150 0.85000.150 0.850 000 10 000 10000 1000.90 00.1010 00

000 10 000 0.850.15 000 01000 10000 01{A,F} B C H I J

B

C

H

I

J

{A
,F}

Figure 6.5: Aggregated order matrix V ′ resulting after the clustering of A and F

predecessor. Finally, after the nine iteration, all activities are clustered together
into one single block, i.e., the discovered reference model.

Fig. 6.6 additionally shows cohesion values, which reflect significance of the
order relations we haven chosen in different iterations. For example, in the sec-
ond iteration, the cohesion we obtain when clustering activity I and the block
containing C and D, equals 0.735. Since cohesion reflects the significance of the
chosen order relation, it also expresses local fitness of the control flow in the ref-
erence model. For example, when comparing the cohesion values, it turns out to
be of high significance that activity C precedes activity D, but less significant that
they precede activity I. When reconsidering our process variants from Fig. 6.2
for example, we can make similar conclusions as the ones described here.

6.4 Mining Process Variants with Different Activity
Sets

So far, our basic method for mining process variants has assumed that all variant
models comprise the same set of activities. Generally, however, process variants
may differ in their activity sets. In this section we discuss how to mine pro-
cess variants with different activity sets. We illustrate relevant issues as well as
necessary extensions of our basic method by analyzing all activities contained in
process variants in Fig. 6.2.

68

6.4. MINING PROCESS VARIANTS WITH DIFFERENT ACTIVITY SETS

4
AND-Split AND-JoinXOR-Split XOR-Join .909

1.0
Separation
Cohesion: 4 Iteration #

G5DC 6I 7 H8
321E B1.01.01.01.0 .9981.0

.9091.0 .796.735.864.793 .999.746 9____ .999
F

A
J.994.997

Figure 6.6: Reference Process Model Discovered Using Clustering Technique

6.4.1 Analyzing the Occurrences of Activities

One fundamental challenge is to decide which activities shall be considered in
the resulting reference model and which not. Another challenge is to fix the
order relations between the considered activities, which is not trivial since not all
activities occur in all variant models.

For a given variants collection, we can measure how frequent each activity ai

appears using Activity Frequency :

Definition 12 (Activity frequency) Let Si ∈ P, i = 1, 2, . . . , n be a collection
of process variants. Let further Ti = (Ni, Ci, CTi, Ei, li) and Ai be the process
structure tree and the order matrix of Si, and wi be the number of process in-
stances that were executed on Si. For each aj ∈

⋃n
i=1 Ni, we define g(aj) as

relative frequency with which aj appears within the given variant collection. For-
mally:

g(aj) =

∑
Si:aj∈Ni

wi∑n
i=1 wi

¨
§

¥
¦6.7

Table 6.1 shows the relative frequency of activities contained in the process
variants of our running example (cf. Fig. 7.2); e.g., activity X is present in 80%
of the variants (i.e., in S1, S3, S4, S5, and S6), while Z only occurs in S5 (i.e.,
20% of the variants). Since S4 contains a loop-block, we obtain 15% as frequency
with which silent activity τ occurs (cf. Def. 8).

In MinAdept the user may set a threshold value in order to determine which
activities shall be contained in the resulting reference process model and which

69

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

Activity A B C D E F G H I J X Y Z τ
g(aj) 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.2 0.15

Table 6.1: Relative frequency of each activity within the given variant collection

not. This way we can exclude activities with low frequency if desired. For ex-
ample, if we only want to consider activities with relative frequency greater than
40%, activity B as well as silent activity τ will be excluded from the reference
process model (excluding τ means the loop structure will not be considered).
Generally, process engineers have to set respective threshold values depending on
whether they want to add more or fewer activities to the reference process model.
Obviously, a good threshold value is the key to success. We discuss how to find
a suitable threshold in Section 6.5.

6.4.2 Coping with Unclear Order Relations

In an aggregated order matrix, the order relations between two activities a and
b are defined as 5-dimensional vector Vab = (v0

ab, v
1
ab, v

+
ab, v

−
ab, v

L
ab), and each field

corresponds to the relative frequency of the respective relation type ’0’, ’1’, ’+’,
’-’ or ’L’ (cf. Def. 11). When mining process variants with different activity
sets, there may be pairs of activities which do not co-occur in any of the process
variants and process instances respectively, but which shall be both included in
the new reference process model. Since the two activities never co-occur, we
are unable to derive relative frequencies for the five possible order relations; i.e.,
their order relations as reflected in aggregated order matrix would be (0,0,0,0,0).
Regarding our example, activities Y and silent activity τ representing the loop
structure do not co-occur in any process variant. Since f(α, β) (cf. Equation 6.2)
will be invalid if one of the two vectors α or β equals (0, 0, 0, 0, 0), we need to find
ways to handle such unclear relationship:

1. Compute separation. When computing separations (cf. Equation 6.3),
we can ignore these unclear relationships. For example, when computing
Separation(a, b) between activity a and b, we can see that order relation vax

is an unclear one, i.e., it equals (0, 0, 0, 0, 0). We therefore do not include
it in the computation. To be more precise, let V be an aggregated order
matrix and let a, b ∈ N be two activities considered in V . We can define
a set M = {x

∣∣x ∈ N \ {a, b}, vax = (0, 0, 0, 0, 0) ∨ vbx = (0, 0, 0, 0, 0)}
which contains all x with vax or vbx being (0,0,0,0,0). Then instead of using
Equation 6.3, we use Equation 6.8 to compute Separation(a, b) to ignore
the influence of unclear relations.

Separation(a, b) =

∑
x∈N\{a,b},x/∈M f2(vax, vbx)

|N | − 2− |M|
¨
§

¥
¦6.8

2. Compute cohesion. When computing Cohesion(a, b) (cf. Equation 6.4),
we will also run into problems if their order relation is (0,0,0,0,0). In this

70

6.4. MINING PROCESS VARIANTS WITH DIFFERENT ACTIVITY SETS

case we can set cohesion(a, b) to 0, i.e., none of the five order relations is
considered as being more significant than the others.

3. Recompute Aggregated Order Matrix. Since an aggregated order ma-
trix captures the distribution of the five order relations within the collection
of variants, for each vector vab, a, b ∈ N , we obtain value 1 as the sum of
its elements. However, this does not apply to the unclear order relations.
Therefore, when re-computing the (reduced) aggregated order matrix af-
ter the creation of a new block (cf. Section 6.3.4), we do not take such
unclear order relations into account. To be more precise, let V be an ag-
gregated order matrix and let a, b, x ∈ N be three activities contained in
V . Assume further that in one iteration of our algorithm, activities a and
b are clustered into a block. Then we set new matrix element v′(a,b)x = vax

if vbx = (0, 0, 0, 0, 0) holds, and v′(a,b)x = vbx if vax = (0, 0, 0, 0, 0) holds,
respectively.

6.4.3 Mining Result when Considering All Activities

Fig. 6.7 shows the discovered process model S′all as well as the intermediate results
we obtain after every iteration of our clustering approach (indicated through the
numbers at the right bottom corner of each block). Note that the discovered
model contains all process activities contains in the variants. This includes the
silent activity τ which represents the loop structure in S4.

G 7DC

I

4X 31F
A.9901.0E 5 B J 61.01.0.9761.0 .973.572 .997.989

.7731.0.671.898.764.971 .6131.0 10
____ .994

2Y .994.992
8HZ .7651.0 9 11

.990.461
12 13

Figure 6.7: The discovered process model S′all based on all activities

71

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

6.4.4 Setting Different Thresholds for Mining Reference
Models

Regarding our example from Fig. 6.2, Fig. 6.8 depicts the models that can be
discovered when setting different threshold values:

G

E B

H

A

F

C D

J

I

XE Y
A

F
BX J

G
H

C D I

E Y
A

F
BX J

G
I

Z H C D
Threshold Є [0,0.15) Threshold Є [0.15,0.2)

Threshold Є [0.2,0.6) Threshold Є [0.6,0.8) Threshold Є [0.8,1.0)

G

E B

H

A

F

C D

J

I

E Y
A

F
BX J

G
H

C Z DI

S’ S’0.15
S’0.2 S’0.6 S’0.8

Figure 6.8: The discovered process models when setting different threshold

Regarding Fig. 6.8, process model S′ contains all activities that have ever
appeared in at least one of the process variants while S′0.8 only contains activities
that appear in all variants. Clearly, we discover different process models when
setting different threshold values. In Section 6.5, we will discuss how to find a
good threshold values in our context.

6.4.5 The MinADEPT Algorithm

Now we can formally introduce the MinADEPT algorithm for mining process
variants. In pseudo code, the MinADEPT algorithm (cf. Sections 6.3 and 6.4)
can be expressed as follows:

The mining starts with deciding on the set of activities to be included in the
(new) reference process model. If the relative occurrence of an activity is larger
than the specified threshold, we include it in the reference model. Following this
we can construct the aggregated order matrix based on the order matrices of each
process variant (cf. Section 6.3.1). Afterwards we apply our mining approach as
described in Section 6.3, i.e., we cluster activities and blocks iteratively until
all activities are contained in one block (lines 7-13 in Algorithm 1). This block
then represents the reference model we have discovered. Note that when there
are unclear order relations, we apply the techniques described in Section 6.4.2 to
deal with them.

The complexity of the mining algorithm described in Section 6.3 corresponds
to O(n2m + n3), where n equals the number of activities each variant comprises
and m equals the number of variants. O(n2m) corresponds to the complexity

72

6.5. EVALUATING PERFORMANCE OF THE MINADEPT ALGORITHM
THROUGH SIMULATION

input : A process variant collection
output: New reference process model
Calculate the activity occurrence for each activity captured in any of1

the variants;
if Occurrence of activity ai > Threshold then2

Include ai in the reference order matrix;3

Compute order matrix for each process variant;4

Build the aggregated order matrix based on the selected activities;5

while {Iteration < number of considered activities -1} do6

Compute Separation table;7

Determine activities to be clustered;8

Compute cohesion between the selected activities;9

Generate the block in the out put model;10

Recompute the aggregated order matrix;11

Algorithm 1: Process mining based on process variants

needed to build the aggregated order matrix, while O(n3) corresponds to the
complexity needed to mine the reference model. Consequently, our algorithm has
polynomial complexity.

6.5 Evaluating Performance of the MinADEPT Algo-
rithm through Simulation

6.5.1 Average Weighted Distance

As discussed at the beginning of this chapter, the goal of our algorithm is to
discover a process model which has minimal average distance to the variants.
Therefore, we first need to define average weighted distance between a refer-
ence process model S and its variants.

Definition 13 (Average Weighted Distance) Let S ∈ P be a reference pro-
cess model. Let further M be a set of process variants Si ∈ P, i = 1, . . . , n, with
wi representing the number of process instances that were executed on basis of Si.
The Average Weighted Distance D(S,M) between S and M can be computed
as follows:

D(S,M) =
∑n

i=1 d(S,Si) · wi∑n
i=1 wi

¨
§

¥
¦6.9

The complexity to compute average weighted distance is NP-hard since the
complexity to compute the distance between two variants is NP-hard (cf. Def.
9). For example, assume that we take the discovered process model S′ (cf. Fig.

73

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

6.8) as new reference process model. Then distance between S′ and each of the
six process variants Si (cf. Fig. 6.2) is as follows: d(S′,S1) = 6, d(S′,S2) = 4,
d(S′,S3) = 5, d(S′,S4) = 4, d(S′,S5) = 7 and d(S′,S6) = 4. Taking variant weights
into account as well (cf. Fig. 6.2), we obtain following average weighted distance
being

(6× 0.2 + 4× 0.2 + 5× 0.05 + 4× 0.2 + 7× 0.15 + 4× 0.2) = 4.9.
This means we need to perform on average 4.9 high-level change operations to

configure a process variant (and related instance respectively) out of the reference
process model. Generally, average weighted distance between a reference model
and its process variants represents how ”close” they are.

Since computing average weighted distance has NP-hard complexity (cf.
Chapter 5), our algorithm does not aim at finding the global optimum, i.e., the
model which has minimal average weighted distance to the variants. However,
this is a rather uncritical issue. Note that most clustering techniques and other
data mining algorithms aim at finding a local optimum rather than a global
one since it is almost impossible to find the global optimum in reasonable time
[181, 34, 110, 138]. Our suggested clustering algorithm constitutes an approach
which tries to solve a complex combinatorial optimization problem in polynomial
time. As benefit we can solve a large scale problem in reasonable time. However
as our algorithm only searches for a local optimum, neither we can theoretically
prove that the discovered model is the one with minimal average weighted dis-
tance to the variants, nor we can claim how close the discovered model is to the
global optimum. In this section, we present comprehensive simulation results to
show performance of our clustering algorithm in different scenarios.

6.5.2 Determining the Optimum Threshold Value

In Section 6.4, we have discussed how to mine process variants with different
activity sets. One important step is to determine which activities should be
considered in the reference model. In our approach, we apply a user-defined
threshold to select activities: the reference model should only contain activities
whose occurrence in the variants is above this threshold (cf. Algorithm 1).

Clearly, determining a good threshold is critical. If the threshold is set too
low (i.e., too many non-relevant activities are considered in the reference model),
this will increase efforts for configuring process variants based on the discovered
model. Note that we then need to delete those none-relevant activities when
configuring the variants. On the contrary, if the threshold is set too high (i.e.,
only few activities are considered in the reference model), configuration efforts
might increase since we need to frequently insert activities to configure specific
variants. Therefore, influence of the threshold value on our algorithm is of high
interest.

Consider our illustrative example presented in Fig. 6.2. Fig. 6.8 shows the
reference process models we can discover by setting different threshold values.
When computing average weighted distance between these reference models and
the six process variants, we obtain 4.75 for S′, 3.75 for S′0.15, 2.6 for S′0.2, 2.4

74

6.5. EVALUATING PERFORMANCE OF THE MINADEPT ALGORITHM
THROUGH SIMULATION

for S′0.6 and 3.0 for S′0.8. Based on this example, we should set the threshold at
around 0.6 in order to obtain a reference process model with minimal average
weighted distance. Clearly, concluding this based on one example is less reliable.
We perform a simulation to analyze the influence of the threshold value. In
our simulation, more than 5000 process models are generated and analyzed. We
describe how the simulation is setup in the next subsection, and discuss simulation
results afterwards.

6.5.3 Simulation Setup

In order to obtain convincing simulation results, we consider different parameters
when generating the datasets for our simulation. Amongst others, these parame-
ters include the size and the similarity of process models. We described our data
generation method in detail in Section 7.5. In summary, we generate 54 groups
of datasets according to different scenarios.7 Each dataset group contains:

1. A reference process model, i.e., a randomly generated model from which we
configure the process variants (see Section 7.5.1 for an algorithm).

2. 100 process variants. We generate each variant by configuring the reference
model according to a particular scenario. For each group of datasets, we
generate 100 process variants.

In total, we generated 5454 process models in our simulation. Note that the
scenario just describes certain properties of the collection of variants configured
from the reference model, but does not control the way a particular variant is
generated; i.e., the 100 variants belonging to the same group are not the same, but
share certain properties (e.g., having the same distance to the reference model).

Since the variants are generated by configuring a given reference model, we are
able to statistically control the occurrence of activities (i.e., activity frequency)
in the variants (see Section 7.5 for the method). In each group, we control the
occurrence of the activities by inserting new activities with certain probabilities
during the configuration of the process variants. The probabilities for inserting
activities range from 0% to 100%. Consequently we obtain activities with different
frequencies appearing in the variants. This way, setting different threshold values
would result in different activity sets, and consequently different process model
as discovered by our algorithm.

Afterwards, to each dataset group, we apply our algorithm to discover a ref-
erence model by setting threshold values to 0%, 10%, 20%, . . . , and 100%. We
further evaluate these results by computing the average weighted distance of the
discovered model. We apply the described approach to all 54 dataset groups.
In order to compare the results from the different groups, the absolute average
weighted distance values are of less interest since each group has different features

7In Section 7.5 we have generated 72 groups of dataset based on different scenarios. However,
18 groups are not relevant in this simulation since the activity frequency are fix in these groups
(groups with Parameter 3 and 4 being ”Low occurrence” or ”high occurrence”). Consequently,
the results are summarized based on the rest 54 groups of datasets.

75

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

and covers different parts of the search space. Therefore, in each group we set
the model discovered with threshold of 0% as basic model. We then evaluate
the remaining models discovered using other threshold values by comparing their
average weighted distances to the one of the basic model. This way, we are able
to analyze all groups as a whole about how the average weighted distances of the
discovered models changes according to the threshold values. In the next subsec-
tions, we present the results we obtained from the 54 groups (5400 variants) of
datasets.

6.5.4 Simulation Results: Influence of Threshold Values

In this section, we analyze how the average weighted distance of the discovered
reference process model changes according to the threshold values. In this con-
text, we compare the average weighted distance of the model obtained by setting
different threshold values with the one obtained by setting threshold at 0%. We
have identified two types of clusters in the 54 groups of datasets with each cluster
containing 27 groups of datasets.8 The results from Fig. 6.9 are plotted as the
mean of the correlative values in each group.9

0.60.650.70.750.80.850.90.951

re
la

tiv
e

di
st

an
ce

0% 20% 40% 60% 80% 100%
Threshold value

Cluster1Cluster2
Figure 6.9: Average weighted distances of the reference models that are discovered
when setting different threshold values

The relative distance of the two clusters all starts at 1 when setting the thresh-
old to 0% (this is easy to comprehend since this is the model based on which we
compare the results in each group). The relative distances in both clusters de-
crease with increasing threshold until around 50%. This indicates that if we filter
out the activities with low occurrence the discovered reference model will have a
shorter distance to the variants, and consequently will require less configuration

8Cluster1 contains 27 groups with parameter 3 and 4 being ”High Consistency”, ”Positive
Correlation” and ”Focus on insert”, where inserted activities have higher consistency; while
Cluster2 contains 27 groups with Parameter 3 and 4 being ”Low Consistency”, ”Negatively
Correlation” and ”Focus on ’move’”, which inserted activities do not have high consistency.

9Data of each group is available online at http://wwwhome.cs.utwente.nl/ lic/Re-
sources.html.

76

6.5. EVALUATING PERFORMANCE OF THE MINADEPT ALGORITHM
THROUGH SIMULATION

efforts. After the threshold reaches 50% the two clusters start to show differ-
ent behaviors. While average weighted distance in Cluster1 begins to increase
with increasing threshold, the ones in Cluster2 remains relatively stable. Such
differences triggered us to perform further analysis on the datasets.

For the datasets in Cluster1, the positions where the activities are inserted
in the reference model to configure the variants are relatively stable. Therefore,
when considering these frequent changes in the discovered reference model, we
can potentially reduce its average weighted distance to the variants. As repre-
sented in Fig. 6.9, when filtering out these activities (i.e., not considering these
frequent changes (activity insertions in our case)), average weighted distance of
the discovered reference increases. For the datasets in Cluster2, the positions
where the activities are inserted in the reference model during process configu-
rations are not stable. Therefore, it does not matter too much whether or not
to include these activities in the discovered reference model. Since the positions
of these activities are not stable, even if we include them in the new reference
model, we still need to frequently move them to their respective positions in the
different variants. This explains why for the datasets in Cluster2 changing the
threshold value does not influence the average weighted distance too much.

Besides analyzing the means of the average weighted distances for the models
resulting from each group of dataset (cf. Fig. 6.9), we have also analyzed the
standard deviations of them. In both clusters the standard deviations for different
threshold values are low and stable. Except the cases for which the threshold value
is 0% (in this case, the standard deviation is 0, since the relative distance is always
1 in all groups), the standard deviations of the distances for all threshold values
are around 0.115 (with plus or minus of 0.02). Such stable and low standard
deviations indicate that in all groups the results follow almost the same trend
as depicted in Fig. 6.9. Therefore, the risk for our conclusion being drawn by
randomness is very low.

For a given collection of variants, knowing which cluster it belongs to can
greatly help for deciding a good threshold value. However, it is very difficult
to know whether the positions of an activity in a collection of variants is stable
or not. We are able to obtain such information since we can control how the
variants are generated in our simulation. Therefore, in order to obtain a model
with shorter average weighted distance, we suggest setting the threshold to around
50%. In this interval, both clusters show relatively better results when compared
to other values. Note that we can obtain the same result if we analyze each of
the 54 groups individually.10

10As our clustering algorithm tries to solve an NP-hard problem in polynomial time, another
interesting question is how close the discovered model is to the real optimum. One possible
solution is to enumerate all process models which can be constructed based on the given activity
set, and then to evaluate the average weighted distances between the enumerated models and the
variants. However, enumerating all process models can result in an enormously large collection
of models (in Chapter 7, we will show that - worst case - we can obtain 2n models by only
adding one activity in a model containing n activities). Besides this, computing the average
weighted distance constitutes an NP-hard problem as well (cf. Def. 13). In our future work,
we will design a more practical approach to evaluate the closeness of our clustering algorithm

77

CHAPTER 6. MINING PROCESS VARIANTS USING A CLUSTERING
TECHNIQUE

6.5.5 Simulation Results: Running Time

Besides analyzing the influence of threshold values on the end results, we also
analyze how fast our clustering algorithm runs. In our simulation, we evaluate
scenarios in which the process models contain on 10-15, 20-30, and 50-75 activities
in each group 11 The average running time for the 54 groups of datasets (each
group contains 100 variants) is summarized in Fig. 6.10.

0.013 0.022
0.181

00.050.10.150.2
10 20 50Number of activitiesAverage computa

tion time (s)

Figure 6.10: The average running time for process models with different size

We use Dell Latitude D630 laptop (2.4GHz CUP and 3.5 GB RAM) to run
the simulation under Windows environment. It is clear from Fig. 6.10 that the
average running time required for even large process models (containing 50-75
activities) is 0.18 seconds, which is a significant low number.

6.6 Summary

In this chapter, we have provided a cluster-based approach for mining block-
structured process variants. Our overall goal is to discover a reference process
model out of a collection of process variants which can be easily configured to
these variants. The proposed algorithm has polynomial complexity O(n2m+n3),
where n equals the number of activities each variant comprises and m equals the
number of variants. This allows us to scale up when solving real-world problems.

We have further evaluated our algorithm through a simulation which com-
prised more than 5000 process models. Simulation results indicate that our algo-
rithm can discover a reference model in a few seconds and we can obtain shorter
average weighted distance when setting the threshold value to around 50%.

In this Chapter, we focus on evaluating the properties of our clustering al-
gorithm. We will provide qualitative and quantitative comparisons between our
clustering algorithm with other approaches in Chapter 8.

to the real optimum.
11According to a recent study [114], process models containing more than 50 activities bear

high risk of containing errors. Following this guideline, we set the largest process model to 75
activities in our simulation.

78

7
Controlling the Evolution of Reference
Process Models: A Heuristic Approach

7.1 Introduction

In Chapter 6 we presented a clustering algorithm which learns from past process
changes by ”merging” the most important parts of the process variants into one
generic process model, which covers these variants best. However, when deriving
a new reference process model without considering the existent one, significant
structural differences between old and new reference model might occur. In many
practical scenarios, too many changes of the current reference process model are
not preferred due to implementation costs or social reasons. Therefore, process
designers should additionally have the flexibility to control to what degree they
want to change the original reference model in order to obtain a new one that
better fits to the variants. In this sense, closeness of the new reference model to
the old one is determined. Similarly, we determine closeness of the new reference
model to the variants which act as ”counterforces”. Basically, this flexibility also
enables designers to consider only the most relevant adaptations when evolving
the reference process model.

In this chapter, we deal with our forth research question (cf. Section 1.2):
Given the original reference process model and a collection of related process

variants derived from it, how can we derive a new reference process model that fits
”better” to these variants? And how can we control the evolution of the reference
process model, i.e., how can we enable process engineers to control to what degree
the new reference model ”differs” from the original one and how ”close” it is to
the given collection of process variants.

Fig. 7.1 describes the overall goal of this chapter. The input of our analysis
solely comprises a reference process model and a collection of process variant
models. We do NOT require the existence of change logs (cf. Def. 6 in Section
2.2.1) which specifically document how the reference process model has been
configured into the variants. The closeness (or distance) between the reference
process model and a process variant is measured in terms of the number of high-
level change operations (cf. Def. 9 in Section 5.2) needed to transform the

79

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

…

Original reference process model S
customization & adaptation

Process variant S1 Process variant S2 Process variant Sn
mining & learning

Discovered reference process model S’

Control
differences

Figure 7.1: Discovering a new reference process model by learning from past
process configurations and by considering the original reference model

reference process model into the respective variant. Clearly, the shorter distance
is, the less efforts are needed for process adaptation.

Basically, we discover a new reference model by performing a sequence of
change operations on the original one. In this context, we want to provide users
with the flexibility to control to what degree the old reference model and the
newly discovered one are similar, i.e., to choose how many change operations
shall be applied to the old reference model to discover the new one. As benefit,
we cannot only control the efforts for updating the reference process model, but
also avoid Spaghetti-like model structures, which is a common challenge in the
field of process mining [197, 39, 19]. Clearly, the most relevant changes, which
significantly contribute to reduce the average distance between discovered refer-
ence model and variants, should be considered first and the less important ones
last. Particularly, if users decide to ignore less relevant changes, the overall per-
formance of our algorithm in respect to the described research goal shall not be
influenced too much. Such flexibility to control the difference between original
and discovered model constitutes a significant improvement when compared to
the clustering algorithm presented in Chapter 6.

The remainder of this chapter is organized as follows. Section 7.2 introduces
our heuristic search algorithm and provides a high-level overview on how it can
be used for mining process variants. We describe two important aspects of our
heuristics algorithm - the fitness function and the search tree - in Sections 7.3 and
7.4. To evaluate the performance of our heuristic mining algorithm, we conduct a
simulation. Section 7.5 describes its setup, while Section 7.6 presents simulation
results. Finally, we conclude with a summary in Section 7.7.

80

7.2. OVERVIEW OF OUR HEURISTIC SEARCH ALGORITHM

7.2 Overview of our Heuristic Search Algorithm

We first present an illustrating example in Section 7.2.1. Then, we give an
overview of our mining algorithm in Section 7.2.3.

7.2.1 Running Example

Fig. 7.2 depicts an illustrating example. Our original reference process model
S is based on common workflow patterns like AND-split, AND-join, XOR-split,
XOR-join, and Loop [193]. Out of this reference model S six different process
variants Si ∈ P (i = 1, 2, . . . 6) were configured through structural adaptations.
Note that these variants do not only differ in structure, but also in respect to their
activity sets. For example, activity X appears in 5 of the 6 variants (except S2),
while activity Z only appears in S5. Furthermore the six variants are weighted.
In the context of our work, we define the weight wi of a process variant Si as
the number of process instances executed on basis of Si. In our example, 25
instances were executed on basis of process variant S1, while 20 instances ran
on S2. If we only know the process variants, but have no runtime information
about related instance executions, we assume variants to be equally weighted; i.e.,
every process variant then has weight 1. Note that structure and weight of the
six process variants in Fig. 7.2 are the same as the variants in Fig. 6.2. However,
the variants in Fig. 7.2 are configured from an original reference process model
S, while the variants in Fig. 6.2 are not.

We can further compute the distances (cf. Def. 9) between original refer-
ence process model S and each process variant Si. For example, when compar-
ing reference process model S with process variant S1 we obtain as distance
five (cf. Fig. 7.2); i.e., we need to apply five high-level change operations
to transform S into S1: delete(loop), move(S, H,I,D), move(S, I,J, endF low),
move(S, J,B, endF low), and insert(S, X,E,B) (cf. Def. 5). As average weighted
distance between S and the six variants (cf. Def. 13 in Chapter 6), we obtain
4.85. This means we need to perform on average 4.85 high-level change opera-
tions to configure a process variant (and related instance respectively) out of the
reference process model.

7.2.2 Naive Approaches

Before we jump directly into our solution approach, we first discuss two naive
approaches.

One naive approach is to simply pick the variant with the highest weight as
the new reference process model. In our example, we would then choose S1 (cf.
Fig. 7.2). By setting S1 as the new reference process model, as average weighted
distance between S1 and all six variants, we obtain 2.65. This value is at least
better than when considering the original reference model S or any of the other
five variants as new reference model. Note that the average weighted distance

81

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

Process configuration
original reference model

S1 S2
S3 S4
S5 S6E Y B JGI HC Z D

AFX

G
E BAF IX JDCH

G
Y HC D BIE JAFX

AF IE B
Y

J
GC H

E B
Y

JGI H C D
AFX

S

Weight: w1 = 25
Weight: w3 = 10
Weight: w5 = 20

Weight: w2 = 20
Weight: w4 = 15
Weight: w6 = 10

GE BI JAFC D HAverage weighted distance = 4.85 change / instance

GH C DE B IJAFX

d(S,S5)= 5< insert(S, Y, {A,F}, B), insert(S, X, E, Y), insert(X, Z, C, D), delete (loop), move (S, J, B, endFlow) >B(S,S5)=Bias:Distance: d(S,S6)= 5< insert(S, X, E, B), insert(S, Y, startFlow, B), delete (loop), move (S, J, B, endFlow), move (S, H, I, C) >B(S,S6)=Bias:Distance:
Distance: d(S,S3)= 5< delete (loop), move(S, J, {A,F}, B), insert(S, X, E, J), Insert (S, Y, startFlow, I), move(S, I, D, H) >B(S,S3)=Bias: d(S,S4)= 4< move(S, H, startFlow, I), insert(S, X, E, B), move (S, I, B, endFlow), move (S, J, B, endFlow, con) >B(S,S4)=Bias:Distance:
Distance: d(S,S1)= 5< delete (loop), move (S, H, I, D), move(S, I, J, endFlow),move (S, J, B, endFlow), insert(S, X, E, B) >Bias: B(S,S1)= d(S,S2)= 5< insert(S, Y, E, B, con), delete (loop), move(S, C, startFlow, I), move (S, J, B, endFlow), move (S, I, D, H) >B(S,S2)=Bias:Distance: D

Figure 7.2: An illustrating example of a reference process model and related
process variants

between Si and the six variants are 3.8 (i = 2), 3.5 (i = 3), 3.85 (i = 4), 3.45
(i = 5) and 3.35 (i = 6).

In Section 7.4.3, we will compare the average weighted distance between S1

and the model we discover using our heuristic algorithm. In addition, simply
setting S1 as the new reference process model has another disadvantage, that it
becomes not possible to control the evolution of the reference process model. It
is clear from Fig. 7.2 that the distance between S and S1 is 5. However, it is
not clear that which of the five change operations in the bias are more important
than others. Therefore, if we are only allowed to perform, saying 3 changes, on
the original reference process model, we are not able to differentiate important
changes with travail ones. This problem gets even worse when considering the
fact that a bias B(S,S1) is only one of the possible sequences of changes to trans-

82

7.2. OVERVIEW OF OUR HEURISTIC SEARCH ALGORITHM

form S into S1, and there can be a lot more other ways to realize such model
transformation.

Another naive approach is to use brutal force method to enumerate all pro-
cess models constructed based on the given activity set, and then to evaluate
them by comparing their average weighted distances to the variants. However,
enumerating all process models can result in an enormously large collection of
models (in Chapter 7, we will show that - worst case - we can obtain 2n models
by only adding one activity in a model with n activities). Besides this, comput-
ing the average weighted distance is an NP-hard problem as well (cf. Def. 13).
This indicates that more sophisticated approach for discovering reference process
models is needed.

7.2.3 Heuristic Search for Process Variant Mining

As discussed in Chapter 5, measuring the distance between two models is an NP-
hard problem, i.e., the time for computing the distance is exponential to the size
of the process models. Consequently, the problem set out in our research ques-
tion (i.e., to find a reference process model which has minimal average weighted
distance to the variants) is an NP-hard problem as well. When encountering
real-life cases (e.g., hundreds up to thousands of variants with complex struc-
ture), finding ”the optimum” would therefore be either too time-consuming or
simply be not feasible. In this thesis, we present a heuristic search algorithm
for process variant mining. Our overall goal is to find a solution which is close to
”the optimum”, but can be computed in a reasonable amount of time.

Heuristic algorithms are widely used in various fields of Computer Science,
like artificial intelligence [110], data mining [181] and machine learning [138].
A problem employs heuristics when ”it may have an exact solution, but the
computational cost of finding it may be prohibitive” [110]. Although heuristic
algorithms do not aim at finding the ”real optimum” (i.e., it is neither possible to
theoretically prove that the discovered result is the optimum nor can we say how
close it is to the optimum), they are widely used in practice. Usually heuristic
algorithms provide a nice balance between the goodness of the discovered solution
and the computation time needed for finding it [110].

Regarding the mining of process variants, Fig. 7.3 illustrates how heuristic
algorithms can be applied in our context. Here we represent each process variant
Si as single node in the two dimensional space (white node). The goal of variant
mining is then to find the ”center” of these nodes (bull’s eye Snc), which has
minimal average distance to them. In addition, as discussed in Section 7.1, we
also want to take the original reference model S (solid node) into account, such
that we can control the difference between the newly discovered reference model
and the original one. Basically, this fundamental requirement motivates us to
balance two forces: one is to bring the newly discovered reference model closer
to the variants (i.e., to the bull’s eye Snc at the right) than the old one; the
other force is to ”move” the discovered model not too far away from original
reference model S (i.e., the solid node at left) such that it does not differ too

83

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

much from the original one. Process designers obtain the flexibility to balance
these two forces, i.e., they are able to discover a model (e.g., Sc), which is closer
to the variants than the old one, but which is still within a limited distance to
the latter. Clearly, the change operations applied first to the (original) reference
model should be more important (i.e., reduce the distance between the reference
model and the variants more) than the ones positioned at the end. Consequently,
if we ignore less relevant changes, we will not influence overall distance reduction
between reference model and variants too much.

No
constraint

Snc : Search result
without constraint

Si :Variants d=1d = 2d = 3 S: Original
reference

model

Discovered Reference ModelOriginal Reference model Process variants Intermediate search result Search steps
Sc: Search result

with constraint

Force 1:
close to variants

Force 2:
close to reference

Figure 7.3: Heuristic search approach

Basically, our heuristic algorithm works as follows:

1. We use original reference model S as starting point.
2. We search for all neighboring process models with distance 1 to the currently

considered reference process model. If we are able to find a better model S′

among these candidate models (i.e., one which has lower average weighted
distance to the given collection of process variants than S), we replace S
by S′.

3. Repeat Step 2 until we either cannot find a better model or the maxi-
mally allowed distance between original and new reference process model is
reached. Finally, S′ corresponds to our discovered reference model Sc.

If we do not set any search limitation, our heuristic algorithm is still able to
find the ”center” of the variants (i.e., Snc). This implies that it can be also
applied to scenarios where there only exists a collection of variants, but the
original reference model is not known. In this case, we can randomly select a
variant Si as starting point and search unlimitedly until we find the ”center”,
i.e., the model with minimal average weighted distance to the given collection of
variants.

Generally, most important for any heuristic search algorithm are two aspects:
the heuristic measure and the algorithm that uses heuristics to search the state

84

7.3. FITNESS FUNCTION OF OUR HEURISTIC SEARCH ALGORITHM

space. Section 7.3 introduces our fitness function which measures the quality
of a particular candidate model; i.e., it allows us to approximately evaluate how
close such candidate model is to the given variants. Section 7.4 then introduces
a best-first search algorithm to search the state space; i.e., how to search for a
next candidate process model.

7.3 Fitness Function of our Heuristic Search Algo-
rithm

Generally, a fitness function of any heuristic search algorithm should be quickly
computable. Since search space may become very large, we must be able to make
a quick decision on which path to choose next. As discussed, average weighted
distance cannot be used as fitness function since complexity for computing it
is NP-hard (cf. Def. 13). In this section we introduce our fitness function,
which can be used to approximately measure the ”closeness” between a candi-
date reference model and the given collection of variants. In particular, it can be
computed in polynomial time. Like in most heuristic search algorithms, the cho-
sen fitness function is a ”reasonable guessing” rather than a precise measurement.
Therefore, in Section 7.6 we investigate correlation between fitness function and
average weighted distance. In the following, we explain how to measure fitness
of a candidate process model Sc.

7.3.1 Activity Coverage

Given a candidate reference process model Sc ∈ P and its process structure tree
T = (Nc, Cc, CTc, Ec, lc) we first measure to what degree its activity set Nc covers
the activities that occur in the given variant collection. Note that Nc may contain
silent activities if there are loops in Sc (cf. Def. 2). We denote this measure as
activity coverage AC(Sc) of Sc. Here, we first need to compute activity frequency
(cf. Def. 12) for all activities appearing in the process variants.

Activity frequency g(aj) measures relative frequency with which aj appears
within the given variant collection. Table 7.1 shows the activity frequency of all
activities contained in any of the process variants of our running example (cf.
Fig. 7.2); e.g., activity X is present in 80% of the variants (i.e., in S1, S3, S4,
S5, and S6), while activity Z only occurs in 20% of the cases (i.e., in S5). Since
variant S4 contains a loop-block, we obtain as frequency 15% with which silent
activity τ occurs in all process structure trees (cf. Def. 8).

Activity A B C D E F G H I J X Y Z τ
g(aj) 1 1 1 1 1 1 1 1 1 1 0.8 0.65 0.2 0.15

Table 7.1: Relative frequency of each activity within the given variant collection

Based on activity frequency, we can define activity coverage as follows:

85

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

Definition 14 (Activity coverage) Let Si, i = 1, . . . , n be a collection of pro-
cess variants, and let Ti = (Ni, Ci, CTi, Ei, li) be the process structure tree of Si.
Let further M =

⋃n
i=1 Ni be the set of activities that are present in at least one

of the process structure trees. Let further Tc = (Nc, Cc, CTc, Ec, lc) be the process
structure tree of candidate process model Sc. Given activity frequency g(aj), for
each aj ∈ M the activity coverage AC(Sc) of model Sc is defined as follows:

AC(Sc) =

∑
aj∈Nc

g(aj)∑
aj∈M g(aj)

¨
§

¥
¦7.1

Obviously, the value range of AC(Sc) is [0, 1]. Let us take original reference
model S as candidate model. It contains activities A, B, C, D, E, F, G, H,
I, J, and τ (which is added when transforming S into its corresponding pro-
cess structure tree (cf. Section 2.1.2)). Therefore, its activity coverage AC(S),
which represents to what degree it covers the activities in the variant collection
corresponds to 10.15

11.8 = 0.860.

7.3.2 Structure Fitting

Though AC(Sc) measures how representative activity set Nc of candidate model
Sc is in respect to a given variant collection, it does not say anything about the
structure of the candidate model (i.e., activity order relations). We therefore
introduce structure fitting SF (Sc) as second important metrics. It measures to
what degree a candidate model Sc structurally fits to the given collection of
variants Si.

Based on the order matrices of process variants (cf. Def. 8), we compute
again aggregated order matrix (cf. Def. 11) which represents a collection of
process variants as a single matrix. In addition, we define the coexistence matrix
which indicates the importance of the order relations. Finally, we describe how
to measure structure fitting SF (Sc) of a candidate model Sc.

7.3.2.1 Aggregated Order Matrix

For a given collection of process variants, first, we compute the order matrix of
each process variant (cf. Def. 8). Regarding our running example from Fig. 7.2,
we need to compute six order matrices (cf. Fig. 7.4). Due to space limitations,
we only show a partial view of the order matrices here (i.e., activities H, I, J,
X, Y, Z as well as silent activity τ representing the Loop-block). Based on the
order matrices, we compute again aggregated order matrix (cf. Def. 11) which
provides a distribution for the five types of order relations between every activity
pairs (cf. Def. 8). Regarding our example, in 60% of all cases, H is a successor
of I (as in S2, S3, S5 and S6), in 25% of all cases H is a predecessor of I (as
in S1), and in 15% of all cases H and I are contained in different branches of an
XOR block (as in S4) (cf. Fig. 7.4). Consequently, we obtain matrix element
VHI = (0.6, 0.25, 0, 0.15, 0) in aggregated order matrix V (cf. Fig. 7.4).

86

7.3. FITNESS FUNCTION OF OUR HEURISTIC SEARCH ALGORITHM

Fig. 7.4 partially shows the aggregated order matrix V for the process variants
from Fig. 7.2. Again, due to space limitations, we only consider order relations
for activities H, I, J, X, Y, Z, and silent activity τ which represents the Loop-
block. Note that since the variants in Fig. 7.2 are the same as the variants in Fig.
6.2, the two aggregated order matrices in Fig. 6.3 and in Fig. 7.4 are the same.
However, we illustrate different parts of the aggregated order matrix (activities
A,B,C,F,H,I and J in Fig. 6.3 and activities H,I,J,X,Y,Z and τ in Fig. 7.4) to
better illustrate the respective algorithms.

‘0’ : successor
‘1’ : predecessor
‘+’ : AND-block
‘-’ : XOR-block

0 1

+ -
L

‘L’ : Loop-block

00 . 1 90 0 . 8 10 00 . 1 70 0 . 8 30 000 01 000 10000 1000 . 2 50 0 . 1 50 . 6 010 00 00 . 8 30 0 . 1 70 000 10 000 10000 10000 10 000 0 . 50 . 5 000 10 000 10000 01000 0 . 8 10 . 1 9000 10 00 . 50 0 . 50 000 10 000 00000 0 . 1 70 . 8 3000 0 . 8 30 . 1 7000 0 . 8 30 . 1 7 000 10 000 10 000 00000 10010 00000 01 000 10 000 00 000 00000 10000 10010 00
000 10 00 . 1 70 . 8 3 00 010 00 000 01000 1000 . 60 0 . 1 50 . 2 5H I J X Y Z τ

H

I

J

X

Y

Z

τ

VH I = (0.6, 0.25, 0, 0.1, 0)

‘0’ : 60%
‘1’ : 25%
‘+’ : 0%
‘-’ : 15%
‘L’ : 0%

V

S1 :25% S 2 :20% S 3 :10% S4 :15% S 5 :20% S 6 :10%
H I J X Y Z τ

H 1 - -
I 0 - -
J - - 0
X - - 1
Y
Z
τ

H I J X Y Z τ

H 0 - -
I 1 - -
J - - 0
X
Y - - 1
Z
τ

H I J X Y Z τ

H 0 - - 0
I 1 - - 0
J - - 0 -
X - - 1 -
Y 1 1 - -
Z
τ

H I J X Y Z τ

H - - - 1
I - - 0 -
J - - 0 -
X - 1 1 -
Y
Z

0 - - -τ

H I J X Y Z τ

H 0 - - - 0
I 1 - - - 1
J - - 0 0 -
X - - 1 1 -
Y - - 1 0 -
Z 1 0 - - -
τ

H I J X Y Z τ

H 0 - - -
I 1 - - -
J - - 0 0
X - - 1 -
Y - - 1 -
Z
τ

Order matrices

Aggregated
order matrix

Figure 7.4: Aggregated order matrix based on process variants

7.3.2.2 Importance of the Order Relations

Generally, the order relations computed by an aggregated order matrix may be
not equally important. For example, relationship VHI between H and I (cf. Fig.
7.4) would be more important than relation VHZ, since activities H and I appear
together in all six process variants while activities H and Z only show up together
in variant S5 (cf. Fig. 7.2). To cope with this, we define co-existence matrix CE
in order to represent the importance of the different order relations occurring
within an aggregated order matrix V .

87

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

Definition 15 (Coexistence Matrix) Let Si ∈ P, i = 1, 2, . . . , n be a col-
lection of process variants. Let further Ti = (Ni, Ci, CTi, Ei, li) and Ai be the
process structure tree and the order matrix of Si, and wi be the number of pro-
cess instances that were executed on Si. The Coexistence Matrix of vari-
ant collection {S1, . . . , Sn} is then defined as 2-dimensional matrix CEm×m with
m = |⋃ Ni|. Each matrix element CEajak

corresponds to the relative frequency
with which activities aj and ak co-occur within the given variant collection. For-
mally: ∀aj , ak ∈

⋃
Ni, aj 6= ak :

CEajak
=

∑
Si:aj ,ak∈Ni

wi∑n
i=1 wi

¨
§

¥
¦7.2

Regarding our running example, Fig. 7.5 shows the corresponding coexistence
matrix. Again, we only depict the coexistence matrix for activities H, I, J, X,
Y, Z, and silent activity τ . For instance, we obtain CEHI = 1 and CEHZ = 0.2.
This indicates that order relation between H and I is more important than the
one between H and Z.

H I J X Y Z τ

H 1 1 0.8 0.6 0.2 0.15

I 1 1 0.8 0.6 0.2 0.15

J 1 1 0.8 0.6 0.2 0.15

X 0.8 0.8 0.8 0.4 0.2 0.15

Y 0.6 0.6 0.6 0.4 0.2 0

Z 0.2 0.2 0.2 0.2 0.2 0

0.15 0.15 0.15 0.15 0 0τ

Figure 7.5: Coexistence matrix based on process variants

7.3.2.3 Structure Fitness of a Candidate Process Models

Since we can represent a candidate process model Sc by its corresponding order
matrix Ac (cf. Def. 8), we determine structure fitting SF (Sc) between Sc and the
variants by measuring how similar order matrix Ac and aggregated order matrix
V (representing the variants) are. We can compute Sc by measuring the order
relations between every pair of activities in Ac and in V .

For example, consider original reference model S as candidate process model
Sc (i.e., Sc = S). A partial view of the corresponding order matrix A is de-
picted in Fig. 7.6. Obviously, AHI =’0’ holds, i.e., H is successor of I in model
S (cf. Fig. 7.6). Consider now aggregated order matrix V . Here the order
relation between activities H and I is represented by the 5-dimensional vector

88

7.3. FITNESS FUNCTION OF OUR HEURISTIC SEARCH ALGORITHM

VHI = (0.6, 0.25, 0, 0.15, 0). If we now want to compare how close AHI and VHI

are, we first need to build an aggregated order matrix V c purely based on our
candidate process model Sc (S in our case). Fig. 7.6 shows both the order matrix
Ac and the ”calculated” aggregated order matrix V c of process model Sc (with
Sc = S). As order relation between H and I in V c, we obtain V c

HI = (1, 0, 0, 0, 0),
i.e., H is always a successor of I. We now can compare VHI (which represents the
variants) with V c

HI (which represents the reference model).

b)

Ac: order matrix of candidate model
Sc as original reference model S

Vc: Aggregated order matrix by candidate
model Sc as original reference model S

a)

H I J X Y Z τ

H 0 0 0
I 1 1 1
J 1 0 0
X
Y
Z

1 0 1τ

000 01000 01000 01 010 00010 00000 01

000 01010 00000 01

010 00010 00010 00H I J X Y Z τ

H

I

J

X

Y

Z

τ

Figure 7.6: Order matrix Ac and aggregated order matrix V c constructed by
candidate model Sc = S

We use Euclidean metrics f(α, β) to measure the closeness between two vec-
tors α = (x1, x2, ..., xn) and β = (y1, y2, ..., yn) (cf. Equation 6.2). f(α, β) ∈ [0, 1]
computes the cosine value of the angle θ between vectors α and β in Euclidean
space. If f(α, β) = 1 holds, α and β exactly match in their directions; f(α, β) = 0
means, they do not match at all. Regarding our running example, we obtain
f(VHI, V

c
HI) = 0.899. This number indicates high similarity between the order re-

lations of the candidate process model in respect to H and I and the ones captured
by the variants.

Based on Euclidean metrics, which measures similarity between the order re-
lations, and Coexistence matrix CE (cf. Def. 15), which measures importance of
the order relations, we can formally define structure fitting SF (Sc) of a candidate
model Sc as follows:

Definition 16 (Structure Fitting) Let Si ∈ P, i = 1, 2, . . . , n be a collection
of process variants and let Ti = (Ni, Ci, CTi, Ei, li) be the corresponding pro-
cess structure trees. Let further CE be the coexistence matrix and V be the ag-
gregated order matrix of this variants collection. For candidate model Sc, let
Tc = (Nc, Cc, CTc, Ec, lc) be the corresponding process structure tree, and let

89

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

m = |Nc| correspond to the number of nodes in Tc. Finally let V c be the aggre-
gated order matrix of Sc. Then structure fitting SF (Sc) is defined as follows:

SF (Sc) =

∑m
j=1

∑m
k=1,k 6=j(f(Vajak

, V c
ajak

) · CEajak
)

m · (m− 1)
∈ [0, 1]

¨
§

¥
¦7.3

For every pair of activities aj , ak ∈ Nc, j 6= k, we first compute similar-
ity of corresponding order relations (as captured by V and Vc) by means of
f(Vajak

, V c
ajak

), and second the importance of these order relations by CEajak
.

Structure fitting SF (Sc) ∈ [0, 1] of candidate model Sc then equals the average
of the similarity multiplied by the importance of every order relation. Regarding
our example from Fig. 7.2, structure fitting SF (S) of the original reference model
S corresponds to 0.632.

7.3.3 Fitness Function

So far, we have introduced activity coverage AC(Sc) and structure fitting SF (Sc)
to evaluate fitness of a candidate model Sc. While AC(Sc) measures to what
degree the activities, occurring in the collection of variants, are covered by the
candidate model Sc, SF (Sc) measures to what degree Sc structurally fits to the
variants, i.e., how good it covers the order relations of the different variants.

Definition 17 (Fitness) For candidate model Sc, let AC(Sc) be the activity
coverage of Sc and let further SF (Sc) be the structure fitting of Sc. We compute
fitness Fit(Sc) of a candidate model Sc as follows:

Fit(Sc) = AC(Sc)× SF (Sc)
¨
§

¥
¦7.4

As AC(Sc) ∈ [0, 1] and SF (Sc) ∈ [0, 1] holds, value range of Fit(Sc) is [0,1]
as well. Fitness value Fit(Sc) indicates how ”close” a candidate model Sc is
to the given collection of variants. If Fit(Sc) = 1 holds, candidate model Sc

will perfectly fit to the variants; i.e., no additionally adaptation will be needed.
Otherwise, further adaptations might be required. The higher Fit(Sc) is, the
closer Sc will be to the variants and the less configuration efforts will be needed.
Regarding our example from Fig. 7.2, fitness value Fit(S) of original reference
process model S is Fit(S) = AC(S)× SF (S) = 0.860× 0.632 = 0.543.

As fitness of a candidate model Sc is evaluated by activity coverage AC(Sc)
multiplied by structure fitting SF (Sc), we can automatically balance the number
of activities to be considered in candidate model Sc. If too many activities of
low relevance (i.e., activities which only appear in a limited number of variants;
e.g., activity Z in our example) are considered in the candidate model, we obtain
a high value for AC(Sc). However, in this case SF (Sc) possibly decreases since
coexistence values (cf. Def. 15) of less relevant activities are rather low (cf. Fig.
7.5). On the contrary, if Sc contains only few activities, SF (Sc) can potentially be
very high, while AC(Sc) is too low in order to qualify Sc as good candidate model.
Therefore, a high value for Fit(Sc) does not only mean that Sc structurally fits

90

7.4. CONSTRUCTING THE SEARCH TREE

well to the process variants, but also that a reasonable number of activities is
considered in the candidate model.

The complexity of computing Fit(Sc) is polynomial: let n be the number of
variants and let m = |⋃n

i=1 Si| be the total number of activities in the variants.
Complexity to compute activity frequency (cf. Def. 12) is O(mn) and complexity
to compute aggregated order matrix V (cf. Def. 11) is O(2m2n). Based on this,
complexity to compute the fitness function is O(m + 2m2). Note that this is
significantly lower than NP-hard level complexity needed for computing average
weighted distance (cf. Def. 13).

As discussed, fitness function Fit(Sc) is only a ”reasonable guess” rather than
an exact measurement (like average weighted distance). Therefore, we analyze
performance of our fitness function later in Section 7.6.

7.4 Constructing the Search Tree

We have sketched the basic steps of our heuristic mining algorithm in Section
7.2.3. In Section 7.3, we have shown how to evaluate a candidate process model
Sc based on fitness function Fit(Sc). In this section, we show how we can find
adequate candidate process models. For that purpose we present a best-first
algorithm which allows us to construct a search tree in such way that we can find
the best candidate model in the search space.

7.4.1 The Search Tree

Let us revisit Fig. 7.3 which gives a general overview of our heuristic search
approach. Starting with the current candidate model Sc and its corresponding
process structure tree Tc = (Nc, Cc, CTc, Ec, lc), in each iteration, we search for
its ”neighbors” (i.e., process models which have exactly distance 1 to Sc) to see
whether or not we still can find a better candidate model S′c with higher fitness
value. Generally, we can construct a neighbor model for a given process model Sc

by applying one insert, delete, or move operation to Sc. All activities aj ∈
⋃

Ni

(Ni corresponds to the activity set of process variant Si), which have appeared
in the variant collection, are candidate activities for change. Obviously, an insert
operation adds an activity aj /∈ Nc to Sc, while the other two operations delete
or move an activity aj already present in Sc (i.e., aj ∈ Nc). Generally, numerous
process models may result by changing one particular activity aj on Sc. Note
that the positions where we can insert (aj /∈ Nc) or move (aj ∈ Nc) activity aj

can be numerous.
Section 7.4.2 provides details on how to find all process models resulting from

the change of one particular activity aj on Sc. In this section, first of all, we
assume that we have already found the best process model (i.e., with highest
fitness value) from all the models resulting from changing a particular activity aj

on Sc. We denote this model as the best kid Sj
kid of Sc when changing aj (see

Section 7.4.2 for computation approach of Sj
kid).

91

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

Our basic idea is to create all neighbor models, to evaluate each of them
with the fitness function, and to finally choose the one with highest fitness value.
We present a best-first algorithm to perform our heuristic variant mining (cf.
Algorithm 2). To illustrate it, we use the search tree depicted in Fig. 7.7.

SsibSBkidSAkid …

A B C YZ

Best kid when changing A
A B Z

…

Best kid when changing Z Best kid when changing YBest kid when changing B Best sibling of all best kids
B

Best kid is better than parentBest kid is NOT better than parent
Terminating condition: No kid is better than its parent

Start

Original reference model S

Search result
SZkid SYkid

Figure 7.7: Constructing the search tree

Our search algorithm starts with setting the original reference model S as
initial state, i.e., Sc = S (see the node at the top of Fig. 7.7). We further define
AS as active activity set, which contains all activities available for change. At the
beginning, AS =

⋃n
i=1 Ni contains all activities that appear in at least one process

variant Si. For each activity aj ∈ AS, we determine the corresponding best kid
S

aj

kid of Sc when changing aj on Sc (i.e., when deleting, moving or inserting aj). If
the best kid S

aj

kid has higher fitness value than Sc, we keep aj in AS; otherwise, we
mark it white and remove aj from AS (cf. Fig. 7.7).1 Afterwards, we find the best
one among all the best kids S

aj

kid, i.e., the one with highest fitness value. We denote
this model as best sibling Ssib and mark corresponding activity as accordingly.
Since model Ssib is the best one we can obtain by applying exactly one change
operation to current candidate model Sc, we set Ssib as first intermediate search
result and replace Sc by Ssib for further search (cf. Fig. 7.7, Ssib are marked as
bull’s eyes). Note that we also remove as from AS since this activity has now
been already considered for change.

The described search method goes on iteratively, until termination condition is

1We can remove all nodes marked as white from active activity set AS. Consequently, we
stop searching the best kids of these activities in further search steps. In principle, it is still
possible that changing them later (i.e., based on another candidate model S′c) results a better
model. However, chance for this is very low due to the fact that we have already enumerated
all possible solutions by changing such activity on Sc. We therefore remove them from AS in
order to reduce search space.

92

7.4. CONSTRUCTING THE SEARCH TREE

met, i.e., until we either cannot find a better model, or the allowed search distance
is reached. The allowed search distance is defined by the process owner in order
to control how many iterations the search method continues. Consequently, the
process owners obtain the flexibility to control to what degree the discovered
reference process model shall differ from the original one. The final search result
Ssib corresponds to our discovered reference model S′ (the node marked by a
bull’s eye and circle in Fig. 7.7).

input : A block-structured process model S; a collection of
block-structured process variants Si and their corresponding
process structure trees Ti = (Ni, Ci, CTi, Ei, li), i = 1, . . . , n;
allowed search distance d ;

output: Resulting process model S′

AS =
⋃n

i=1 Ni /* Define AS as active activity set */;1

Sc = S /* Define initial candidate model */;2

t = 1 /* Define initial search step */ ;3

while |AS| > 0 and t ≤ d do /* Search condition */;4

Ssib = Sc /* Set Sc as initial Ssib */ ;5

Define as as the selected activity ;6

foreach aj ∈ AS do7

Skid = FindBestKid(Sc) ;8

if Fitness(Skid) > Fitness(Sc) then9

if Fitness(Skid) > Fitness(Ssib) then10

Ssib = Skid ;11

as = aj ;12

else13

AS = AS \ {aj} ;14

/* Best kid not better than its parent */

if Fitness(Ssib) > Fitness(Sc) then15

Sc = Ssib ; /* Initiate next iteration */ ;16

AS = AS \ {as} ;17

else18

break ;19

t = t+1 ;20

Algorithm 2: Heuristic search algorithm for variant mining

7.4.2 Options for Changing one Particular Activity

Section 7.4.1 has shown how to construct a search tree by comparing the best
kids S

aj

kid. This section discusses how to find such best kid S
aj

kid when changing a
particular activity aj , i.e., we discuss how to find the ”neighbors” of a candidate

93

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

model Sc by performing one high-level change operation (cf. Def. 5) on aj .
The best kid S

aj

kid is consequently the one with highest fitness value among all
considered models.

Regarding a particular activity aj , we consider three types of basic change
operations: delete, move and insert activity (cf. Section 7.4.1). The neighbor
model resulting through deletion of an activity aj ∈ Nc can be easily determined
by removing aj from the process model and the corresponding order matrix;
furthermore, movement of an activity can be simulated by its deletion and sub-
sequent re-insertion at the desired position. Thus, the basic challenge in finding
neighbors of a candidate model is to apply one activity insertion such that block
structuring and soundness of the resulting model can be maintained. Obviously,
for a particular activity aj , the positions where we can (correctly) insert it into
candidate model Sc are the subjects of our interest. Inserting aj at a (correct)
position within Sc results in one neighbor model. Therefore, finding all neighbors
first requires finding all valid positions where we can correctly insert aj in Sc.

Fig. 7.8 provides one example. Given a process model S, we would like to find
all process models that may result when inserting activity X into S. We apply
the following two steps to ”simulate” insertion of an activity:

1. First, we enumerate all possible blocks the candidate model S contains. A
block can be an atomic activity, a self-contained part of the process model,
or the process model itself (Algorithm 3 enables enumeration of all possible
blocks of a process model). Note that the number of possible candidate
blocks can become very large; e.g., hundreds of potential blocks may exist
for a process model containing 50 activities.

2. After having determined all blocks of the current model we can simulate
all possible insertions of activity X. For this purpose, we can cluster X with
each block and position it in relation to this block, i.e., we can set order
relation between X and selected block B to 3 ∈ {0, 1,+,−}, or assign ’L’ to
3 if X is a silent activity τ representing a loop-block (cf. Def. 8). This way,
we obtain one neighbor model S′ by inserting X to the respective position
in S such that it forms another block together with B.

Following these two steps, we can guarantee that the resulting process model
is sound and block-structured. Every time we cluster an activity with a block, we
actually add this activity to the position where it can form a bigger block together
with the selected one, i.e., we replace a self-contained block of a process model
by a bigger one. Consider our example from Fig. 7.8a. Among the determined
blocks, we can find the sequential block defined by activities C and D (Step 1).
Then we can cluster activity X with this block using order relation 3 = ”0”, for
example (Step 2). Consequently, we obtain S′ as one neighbor of S (cf. Fig. 7.8).
Note that for every block we enumerated in Step 1, we can cluster activity X with
it by one of the order relations 3 to obtain a neighbor model S′. Therefore, if
we are able to find all blocks process model S contains, we can find all neighbor
models by inserting X into process model S. In the following, we describe these
two steps in detail.

94

7.4. CONSTRUCTING THE SEARCH TREE

a) b) Step 1: Enumerate blocks

G
I J

C D
H {C, D}, {J, H}{C, D, G}{I, C, D, G}, {C, D, G, H}

Blocks containing n activitiesn = 1n = 2n = 3n = 4n = 5n = 6
{I}, {G}, {C}, {D}, {J}, {H}
{I, C, D, G, J}, {C, D, G, J, H}{I, C, D, G, J, H}

Blocks Enumerate blocksSc: a process model Cluster X with block {C, D} by ◊ = ‘0’ Sc’: one possible resulting model after inserting activity X in Sc
Ac: Order matrix of Sc AS’: Order matrix of Sc’

Step 2: Clustering

G
I J

C D
H

X

Cluster X with block {I, C, D, G, J, H} by ◊ = ‘1’ Cluster X with block {G} by ◊ = ‘+’ Cluster X with block {J, H} by ◊ = ‘-‘
Some example neighboring models by inserting X into Scc)

Cluster X with block {C, D} by ◊ = ‘L’ (only if X is a silent activity τ)

C D G H I JCDGHIJ
1 1 11111 1111 1 10 00000 00 0 00 0 0

+++ + Same order relations ◊ = “0”
C D G H I JCDGHIJ

+++ + 00000 00 0 00 0 0
1 10 11 11 11 11 1 1X 1

X

+ 01 1
+
0
0
1

0 0
1
1 Copy of block {C,D}

G
I J

C D
HX

G
I J HX

C D

XG
I

C D HJ

G
I J

C D
H

Figure 7.8: Finding the neighboring models by inserting X into process model S

7.4.2.1 Step 1: Block-enumerating Algorithm

We now present an algorithm to enumerate all possible blocks of a process model
S. Let S ∈ P be a block-structured process model and T = (N,C, CT,E, l) be
its corresponding process structure tree. N = {a1, . . . , an}. Let further A be the
order matrix of S. Two activities ai and aj can form a block if and only if the
following holds:

∀ak ∈ N \ {ai, aj} : Aaiak
= Aajak

¨
§

¥
¦7.5

i.e., two activities can form a block if and only if they have exactly same order
relations to remaining activities. Consider our example from Fig. 7.8a. Here
activities C and D can form a block, since they have same order relations to
remaining activities G, H, I, and J.

The block-enumerating algorithm is depicted in Algorithm 3. Let us first de-
fine BSx as the set containing all blocks comprising exactly x activities. In its
initial state, each activity forms a single block by its own (Line 2) and conse-
quently we obtain BS1 (Line 3). The algorithm starts by computing BS2 (blocks
containing 2 activities) and continues iteratively to compute BSi until it reaches
its upper boundary i = n. In each iteration, we can determine a block containing
x activities by merging two disjoint blocks containing j and k activities respec-
tively (i = j + k) (Line 7). For example, a block containing 2 activities can
only be obtained by merging two blocks of which each contains 1 activity. Or

95

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

input : A block-structured process model S, its corresponding process
structure tree T = (N,C, CT,E, l) and its order matrix A

output: A set BS with all possible blocks

Define BSx be a set of blocks containing blocks with x activities.1

x = (1, . . . , n);
Define each activity ai as a block B, i = (1, . . . , n) ;2

BS1 = {B1, . . . , Bn}. /* initial state */ ;3

for i = 2 to n do /* Compute BSi */4

let j = 1; let k = i;5

while j ≤ k do6

k = i - j /* A block containing k activities can only be7

obtained by merging blocks containing i and j
activities */;
foreach (Bj , Bk) ∈ BSj ×BSk do /* judge whether Bj and8

Bk can form a block */;
merge = TRUE;9

if Bj

⋂
Bk = ∅ then /* Disjoint? */10

foreach (aα, aβ , aγ) ∈ Bj ×Bk × (N \Bj

⋃
Bk) do11

if Aaαaγ 6= Aaβaγ then12

merge = FALSE /* two blocks con merge only13

if they show same order relations to the
activities out side the two blocks */;
break ;14

else15

merge = FALSE;16

if merge = TRUE then17

Bp = Bj

⋃
Bk;18

BSi = BSi

⋃
Bp;19

j = j + 1 ;20

BS =
⋃n

x=1 BSx21

Algorithm 3: Block enumerating algorithm

we can only obtain a block containing 5 activities by merging two disjoint blocks
containing either 1 and 4 activities respectively or 2 and 3 activities respectively
(Lines 5 - 20). Lines 9 to 19 check whether or not two blocks Bj and Bk can be
merged. This is possible iff any activities aα ∈ Bj and aβ ∈ Bk show same order
relations to the remaining activities outside the two blocks. Otherwise (Line 16),
Bj and Bk cannot form a block (i.e., merge = FALSE). Until we obtain all sets
of blocks BSx with x = 1, . . . , n activities per block, we can define set BS as
BS =

⋃n
x=1 BSx. Consequently BS corresponds to all blocks, model S contains

96

7.4. CONSTRUCTING THE SEARCH TREE

(Line 21).2Consider the example from Fig. 7.8a. For model S, all possible blocks
are enumerated. As activities C and D show same order relations in respect to
remaining activities in order matrix As, for example, they may form a block.
Or, blocks {C, D} and {G} show same order relations in respect to remaining
activities H, I and J; therefore they can form a bigger block {C, D, J}. As S
contains 6 activities, its blocks are organized in 6 groups with blocks of different
sizes.

7.4.2.2 Step 2: Cluster Inserted Activity with a Block

In Step 1, we have shown how to enumerate all possible blocks for a given can-
didate model Sc. Based on this, we describe where we can insert a particular
activity aj in Sc such that we obtain a sound and block-structured model again.

Assume that we want to insert activity X in S (cf. Fig. 7.8). To ensure block
structure of the resulting model, we ”cluster” X with an enumerated block, i.e., we
replace one of the previously determined blocks B by a bigger block B′ containing
both B and X. In the context of this clustering, we set order relation between B
and X to 3 ∈ {0, 1,+,−} (see Def. 8), i.e., the order relations between X and
all activities of B are defined by 3. One example is given in Fig. 7.8b, where
inserted activity X is clustered with block {C, D} by order relation 3 = ”0”,
i.e., we set X as successor of the sequence block containing activities C and D.
To realize this clustering, we have to set order relations between X on the one
hand and activities C and D from the selected block on the other hand to ”0”.
Furthermore, order relations between X and remaining activities are same as for C
and D respectively. Afterwards these three activities form a new block {C, D, X}
replacing the old one (i.e., {C, D}). This way, after inserting X into S, we obtain
a sound and block-structured process model S′.

Fig. 7.8b shows one resulting model S′ which we obtain when inserting X in
S. Obviously, S′ is not the only neighboring model here since we can insert X
at different positions in S; i.e., for each block S enumerated in Step 1, we can
cluster it with X by any one of the four order relations 3 ∈ {0, 1, +,−}, or ’L’ if
X is a silent activity τ which represents Loop-block. Regarding our example from
Fig. 7.8, S contains 14 blocks. Consequently, the number of models that may
result when inserting X in S equals 14 × 4 = 56, or 14 × 1 = 14 if X is a silent
activity τ which represents Loop-block; i.e., we obtain 56 potential models (or 14
if X is a silent activity) by inserting X into S 3 . Fig. 7.8c shows some neighboring
models of S. Note that the resulting models are not necessarily unique, i.e., it is

2Worst-case, the complexity of this algorithm is 2n where n corresponds to the number of
activities. However, this worst-case scenario will only occur if any combination of activities may
form a block (like a process model for which all activities are ordered in parallel to each other).
During our simulation, in most cases we were able to enumerate all blocks of a process model
within few milliseconds. This indicates that complexity is low in practice.

3During the implementation of this algorithm, we also remove all blocks which consist only
one silent activity τ . Because a silent activity τ exists only to represents the Loop-block in a
process model, it is therefore not possible to cluster an activity only with this silent activity to
form a block.

97

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

possible that some of them are the same. However, this is not an important issue
in our context since fitness function Fit(Sc) can be quickly computed. Therefore,
some redundant information does not significantly decrease performance of our
heuristic search algorithm.

7.4.3 Search Result for our Running Example

Regarding our example from Fig. 7.2, we now present the search result we obtain
when applying our heuristics search algorithm. Fig. 7.9 does not only show the
finally resulting model, but also depicts all intermediate process models discovered
during the search. Note that in this scenario, we do not set any limitation on the
number of search steps, i.e., we allow the algorithm to go as far as possible to
find the best reference model.

G

E B

I H

A
F

C D

J

G
E B

H

A

F

C D

JX

I

G

E B

I H

A

F

C D

JX

S: original reference model

∆1=Move (S, J, B, endFlow)
S[∆1>R1

R1 : result after 1 change R2 : result after 2 changes

R4 : result after 4 changes
(Final result) ∆4= Mpve(R3, I

, D, H)

R 3[∆ 4>R 4
G
E B

I J

A
F

C D
H

E B
A
F

J

G
I H

C D

∆3=Insert (R2, X, E, B) R2[∆3>R3∆2= delete (R1, Loop) R1[∆2>R2
R3 : result after 3 changes

Figure 7.9: Search result by every change operations

Fig. 7.9 shows the evolution of the original reference model S. The first
operation ∆1 = move(S, J,B, endF low) changes S into intermediate result model
R1. According to Algorithm 2, R1 constitutes that neighbor model of S which can
be derived by applying one valid change operation to S and which shows highest
fitness value in comparison to all other neighbor models of S. Using R1 as next
input for our algorithm, we discover process model R2. Here, change operation
∆2 = delete(R1, Loop) is applied. Based on R1, the search algorithm discovers
R3 with ∆3 = insert(R2, X, E, B). Finally, we obtain R4 by performing change
∆3 = move(R2, I,D,H) on model R3. Since we cannot find a ”better” process
model by changing R4 anymore, we obtain R4 as final result. Note that if we
set constraints on allowed search steps (i.e., we only allow to change original
reference model by maximal d change operations), the final search result would
be as follows: Rd if d ≤ 4 or R4 if d > 4. We further compare the original
reference model S and all (intermediate) search results in Table 7.2.

98

7.4. CONSTRUCTING THE SEARCH TREE

We first show the fitness value of all the models in Fig. 7.9. As our heuristic
search algorithm is based on finding process models with better fitness values, we
can observe improvements of the fitness values with each search step. The fitness
value Fit(S) increases from 0.543 (model S) to 0.687 (model R1), and then to
0.805 (model R2) and to 0.844 (model R3). Finally, it reaches 0.859 (model R4).
Though such fitness value is only a ”reasonable guessing” of how good the result
model is, the improvement of the fitness value at least indicates that discovered
models is assumed to get better in each iteration.

Still, we need to examine whether or not the discovered process models are
indeed getting better. We therefore compute the average weighted distance be-
tween the discovered model and the variants, which is a precise measurement
in our context. From Table 7.2, the improvement of average weighted distances
after applying the above changes becomes clear, i.e., the average weighted dis-
tance drops monotonically from 4.85 (when considering model S) to 2.4 (when
considering model R4). Measuring the average weighted distance shows that for
the given example, the algorithm performs as expected. Note that R4 also has
shorter average weighted distance than S1 which is the variant with the highest
weight value.

One important reason to design a heuristic search algorithm in our context
was to be able to only consider the most relevant change operations, i.e., the
important changes (reducing average weighted distance between reference model
and variants most) should be discovered at beginning while the trivial ones should
be either ignored or be put at the end (cf. Section 7.1). We therefore additionally
evaluate delta-fitness and delta-distance, which indicate the relative improvement
of fitness values and the reduction of average weighted distance for every iteration
of the algorithm. For example, the first change operation ∆1 changes S into
R1, and consequently improves fitness value (delta-fitness) by 0.143 and reduces
average weighted distance (delta-distance) by 0.9. Similarly, ∆2 reduces average
weighted distance by 0.7, ∆3 by 0.6 and ∆4 by 0.25. It is obvious that the
delta-distance is monotonically decreasing as the number of change operations
increases. This indicates that the important changes are performed at beginning
of the search, while the less important ones are performed at the end.

Another important feature of our heuristic search is its ability to automat-
ically decide on which activities shall be included in the reference model. A
predefined threshold or filtering of the less relevant activities in the activity set

S R1 R2 R3 R4

Fitness 0.543 0.687 0.805 0.844 0.859
Average weighted distance 4.85 3.95 3.25 2.65 2.4

Change Operation Move Delete Insert Move
Delta-fitness 0.143 0.118 0.039 0.009

Delta-Distance 0.9 0.7 0.6 0.25

Table 7.2: Search result by every change

99

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

are not needed. In our example, X is automatically inserted, while the Loop is
automatically deleted. The only concern in our heuristic variant mining is to
reduce the average weighted distance, i.e., the three change operations (insert,
move, delete) are automatically balanced based on their influence on the reduc-
tion of average weighted distance. This is also a significant improvement when
compared to many other process mining techniques in which preprocessing of
trivial activities should be conducted before performing the mining [98, 195].

7.5 Simulation Setup

Clearly, using only one example to measure performance of our heuristic mining
algorithm is far from being enough. Since computing average weighted distance is
at NP-hard level, the fitness function, whose calculation needs polynomial time,
can be only an approximation for it. Generally, we must not assume that improve-
ment of the fitness value always results in reduced average weighted distance.
Therefore, we first have to analyze to what degree fitness improvement (delta-
fitness) correlates with reduction of average weighted distance (delta-distance)?

We further want to analyze whether our algorithm scales up. Clearly, search
space is significantly larger and thus it takes longer to find the result if we have
to cope with a large number of variants with dozens up to hundreds of activities.
Therefore, it is important to analyze is whether performance of our algorithm
decreases when facing larger models, i.e., we check whether correlation between
delta-fitness and delta-distance depends on the model sizes?

Furthermore, we need to evaluate whether or not most important changes
(i.e., the change operations which largely reduce average weighted distance) are
performed at the beginning of our search. If this is the case, running our algorithm
will still provide good results when setting search limitations or filtering out the
change operations performed at its end. Therefore, our third research question is
as follows: to what degree are most relevant change operations positioned at the
beginning of the search steps?

Finally, we investigate whether we can further improve performance of our
algorithm by applying other data mining or artificial intelligence techniques, i.e.,
we try to adopt the concept of ”pruning” as commonly used in data mining and
artificial intelligence [181, 110]. In our context, we can ”prune” the cases in
which delta-fitness is not nicely correlated with delta-distance, and consequently
improve performance of our algorithm by adapting it to such cases. Therefore,
our last research question is: How can we improve performance of our heuristic
mining algorithm by adopting the concept of ”pruning”?

We try to answer these four questions using simulation. In a simulation, ”we
numerically excise the model for the inputs and see how they affect the outputs”
[95]. Simulation is often applied in system design, analysis and evaluation, and is
one of the most widely used, if not the most widely used, techniques in operations
research and management science [95]. In the context of our research, we can
provide statistical answers for our four research questions by generating thousands

100

7.5. SIMULATION SETUP

of process models as input for our analysis.
Section 7.5 describes the setup of our simulation. Simulation results, are

presented in Section 7.6. In general, we create 72 dataset groups based on different
scenarios. Each of these groups consists of 1 reference model and 100 variants
configured out of it. In total, we consider 7272 process models in our analysis.

7.5.1 Generating Reference Process Models

Our general idea of randomly generating block-structured reference models is to
cluster blocks, i.e., we randomly cluster activities and blocks respectively into a
bigger block. This clustering continues iteratively until all activities (blocks) are
clustered (see Algorithm 4 for details).

input : Set of activities ai the process model to be generated should
contain, i = (i, . . . , n)

output: Sound and block-structured process model S

Define each activity ai as a basic block Bi, i = (1, . . . , n);1

Define set B := {B1, . . . , Bn} /* initial state */ ;2

while |B| > 1 do3

randomly selected two blocks Bi, Bj ∈ B ;4

randomly select an order relation 3 ∈ {0, 1, +,−}, or 3 ∈ {L} if5

either Bi or Bj is a block which consists only a silent activity τ to
represent Loop (cf. Def. 8) ;
build block Bk which contains sub-blocks Bi and Bj having order6

relation 3 ;
B := B \ {Bi, Bj} ;7

B := B⋃{Bk} ;8

S := B0 with B0 ∈ B9

Algorithm 4: Randomly generating a reference model

To illustrate how Algorithm 4 works, we show an example in Fig. 7.10. As
input, a set of activities {A,B,C,D,E} is given. The goal is now to randomly con-
struct a block-structured process model S out of this activity set. The algorithm
starts with considering each activity ai as basic block Bi and adding these basic
blocks to set B (Lines 1-2): B = {{A}, {B}, {C}, {D}, {E}}. Following this, Algo-
rithm 4 randomly selects two blocks Bi and Bj (Line 4) and clusters them using a
randomly chosen order relation 3 (Lines 5-6). Regarding our example, blocks {B}
and {C} are first selected to construct new block {B, C} with randomly chosen
order relation ’1’ (i.e., B precedes C). The newly created block {B, C} then re-
places blocks {B} and {C} within set B, i.e., we obtain B = {{A}, {B, C}, {D}, {E}}
(Lines 7-8). This procedure (Lines 4-8) is repeated until block set B only contains
one single block B0 = {A,B,C,D,E}. B0 then represents our randomly generated
process model S (Line 10). Fig. 7.10 shows this model as well as the blocks
constructed in each iteration.

101

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

AB C E D

1 *

1 0Order relation randomly chosen
Result

B C

E

DA 1 2 3 4
Figure 7.10: Example of generating a random process model

In practice, certain order relations are used more often than others; e.g., the
predecessor/successor relations occur more frequently than AND- or XOR-splits
[236]. When randomly generating process models, we take this into account as
well. Rather than assuming a uniform distribution of the different order relations
for the clustering of the two blocks, we set the probability for choosing an AND-
split (3 =′ +′) and the one for choosing an XOR-split (3 =′ −′) respectively
to 10%, while predecessor-successor relationships (3 = {0, 1}) are chosen with
probability of 80%.

7.5.2 Parameters for Generating Process Variants

Taking a randomly generated reference process model, our simulation controls the
way variants are configured. This can be done by adjusting a number of param-
eters; e.g., on how many change operations shall be performed when configuring
a particular variant or the position within the model where activities shall be
moved or inserted at. Altogether, we consider four parameters:

1. Parameter 1 (Size of Process Models). The size of a process model
variant (i.e., the number of its activities) might influence performance.
Therefore, we need to check behavior of our algorithm when applying it
to variants of different size. This is particularly important to evaluate
scalability of our algorithm, i.e., we need to check whether correlation of
delta-fitness and delta-distance depends on model size.

2. Parameter 2 (Similarity of Process Variants). This parameter con-
trols how ”close” the variants are; e.g., whether or not they are similar to
each other. In this context, similarity measures change distance, i.e., how
difficult it is to configure one variant into another (cf. Def. 9).

3. Parameter 3 (Activity Occurrence) This parameter controls the proba-
bility of each activity for being involved in changes. If an activity frequently
changes when configuring the variants, this should be considered in the dis-
covery of the new reference model.

4. Parameter 4 (Activity Consistence) This parameter controls ”homo-
geneity” of the applied insert and move operations; e.g., whether an activity

102

7.5. SIMULATION SETUP

is moved to (or inserted at) same or similar positions. Parameter 4 helps
us to examine whether such homogeneity influences search results.

Consistency
O

cc
ur

re
nc

e
0

1

1

Keep

Drop

Figure 7.11: Consistency and occurrence

As Parameters 1 and 2 are rather intuitive, Parameters 3 and 4 are more dif-
ficult to comprehend. Consider Fig. 7.11. Assume that activity aj is frequently
inserted when configuring variants (high occurrence), and that its insertion po-
sition is rather constant (high consistency). Then our heuristic algorithm should
also insert aj into the reference model with high probability (upper-right quad-
rant of Fig 7.11). On the contrary, if an activity appears in only few variants
(low occurrence) and its positions within those variants are varying a lot (low
consistency), we should ignore it (lower-left quadrant of Fig. 7.11). The unclear
cases concern the other two quadrants in the value space (marked with question
marks in Fig. 7.11). Generally, it is difficult to decide whether or not we should
insert an activity with high frequency, but very instable positions. Even if we add
this activity to the reference model, we need to move it quite frequently due to
its instable position; i.e., adding such activity does not necessarily reduce average
weighted distance. Furthermore, if an activity does not appear frequently within
the given variant collection, but its position within the variant is constant, it is
also difficult to determine whether we should add this activity to the reference
model. If we insert it in such case, we need to delete it rather often during vari-
ant configuration. In the following subsections, we explain how we simulate the
different scenarios to cover the complete value space.

7.5.3 Parameter Settings

When configuring a variant out of a randomly created reference model, we vary
values of the four parameters described in Section 7.5.2.

Parameter 1 (Size of Process Models) This parameter controls how many
activities shall be contained in the original reference model and thus controls size
of process variants. We consider three options:

� Small-sized reference models (10 activities)

103

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

� Medium-sized reference models (20 activities)
� Large-sized reference models (50 activities)

Our simulation uses same reference model for scenarios containing process
models of same size. This way, we want to avoid the influence of the randomly
generated reference model. According to [114], process models containing more
than 50 activities show high risk of errors; i.e., it is not recommended to design
such large models. Following this guideline, we set the largest reference model
to 50 activities in our simulation. Still variants can have different activity sets in
comparison to the reference model since their configuration also employs insert
and delete operations.

Parameter 2 (Similarity of Process Variants) Closeness between vari-
ants is measured by the total number of change operations we apply when gen-
erating the variants (cf. Def. 9). Three possible choices exist:

� Small-change (10% changed activities)
� Medium-change (20% changed activities)
� Large-change (30% changed activities)

For datasets comprising large-sized process variants with 50 activities, medium-
change means that we need to apply 10 change operations to the reference model
in order to configure a particular process variant. This way, we can control dis-
tance between reference model and variants. Indirectly, we can further control
similarity between the variants.

Our simulation allows to change up to 30% of the activities when configuring
a particular variant. From this, we can conclude that the difference between two
variants can be up to 60%. We assume that in practice 60% difference between
variants constitutes a significantly large number. Note that process variants usu-
ally have common parts, i.e., they are more or less similar to each other. [56]
shows similar results concerning the degree of deviations between reference model
and variants. Here, it is a headquarter policy that 80% of the processes need to
comply with the global process, while 20% deviations are tolerated to adjust the
process to local regulations.

Parameter 3 (Activity Occurrence) and Parameter 4 (Activity Con-
sistency) Fig. 7.11 depicts the influence activity occurrence and activity con-
sistency have on our algorithm. In order to analyze their relationship, we have
designed eight different scenarios to cover the space as illustrated in Fig. 7.11.
The scenarios are depicted in Fig. 7.12.

Fig. 7.12a shows four simple scenarios. Each of them is constructed by keeping
either occurrence or consistency stable while changing the other dimension:

1. Low Occurrence: Occurrence of activities is kept at 30% while their
consistency varies from 0 to 80%.

2. High Occurrence: Occurrence of activities is kept at 70% while their
consistency varies from 0 to 80%.

3. Low Consistency: Consistency of activities is kept at 30% while their
occurrence varies from 0 to 80%.

104

7.5. SIMULATION SETUP

O
cc

ur
re

nc
e

Focus on “move” “Move” operations in“Insert” operations in
Focus on “Insert” “Move” operations in“Insert” operations in

a) b)

Simple scenarios Complex scenarios

Consistency

30%

30%

70%

70%

High occurrenceLow consistency Low occurrence
High consistency

O
cc

ur
re

nc
e

Consistency

Positive correlationNegative correlation

Figure 7.12: Space coverage using different scenarios

4. High Consistency: Consistency of activities is kept at 70% while their
occurrence varies from 0 to 80%.
In order to better cover value space, we have designed four additional sce-
narios (cf. Fig. 7.12b.)

5. Positive Correlation: Consistency of a particular activity is positively
correlated with its occurrence; i.e., if activity aj has high occurrence it also
has high consistency. This is applied to moved as well as inserted activities.

6. Negative correlation: Consistency of an activity is negatively correlated
with its occurrence. If aj has high occurrence value it has low consistency.
This is applied to moved as well as inserted activities.

7. Focus on ”move”: High consistency is assigned to moved activities while
low consistency is assumed for the inserted activities.

8. Focus on ”insert”: High consistency is assigned to the inserted activities
while low consistency is assumed for the moved activities.

We do not only apply these scenarios to better cover value space, but also
to analyze whether insert and move operations are considered being equally im-
portant by our algorithm. Since insert and move operations are used with same
weight when generating our dataset, our heuristic mining algorithm should not
show significant differences in respect to these two change patterns when dis-
covering the reference model. Table 7.3 summarizes the parameter settings for
different parameters. The technical details for implementing the different scenar-
ios are out of the scope of this thesis (see a technical report for details [102]).
In general, we can generate each dataset group by adjusting the values of the
different configuration parameters. Since we have 3 options for Parameter 1, 3
options for Parameter 2, and 8 scenarios to cover value space of occurrence and
consistency, we generate in total 3× 3× 8 = 72 dataset groups.

105

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

Parameter 1 (Size of Process Models)
1. Small-sized Reference model contains 10 activities
2. Medium-sized Reference model contains 20 activities
3. Large-sized Reference model contains 50 activities

Parameter 2 (Similarity of Process Variants)
1. Small-change 10% activities are changed
2. Medium-change 20% activities are changed
3. Large-change 30% activities are changed

Parameter 3 (Activity Occurrence) and Parameter 4 (Activity Consistency)
1. Low Occurrence Occurrence of activities at 30%; their consistency varies from 0 to 80%
2. High Occurrence Occurrence of activities at 70%; their consistency varies from 0 to 80%
3. Low Consistency Consistency of activities at 30%; their occurrence varies from 0 to 80%
4. High Consistency Consistency of activities at 70%; their occurrence varies from 0 to 80%
5. Positive Correlation Consistency of an activity is positively correlated with its occurrence
6. Negative correlation Consistency of an activity is negatively correlated with its occurrence
7. Focus on ”move” High consistency for moved activities; low consistency for inserted ones
8. Focus on ”insert” High consistency for inserted activities; low consistency for moved ones

Table 7.3: Summary of parameter settings

7.5.4 Simulation Setup

For each one of the 72 dataset groups, we apply our heuristic algorithm in order
to discover a new reference model by mining the collection of variants. We do not
set any constraints on search steps, i.e., the algorithm only terminates if no better
model can be discovered. We use a Dell Latitude Laptop (2.4 GHZ CPU and 3.5
GB RAM) to run our simulation under Windows. The following information is
documented for each group:

1. Original reference model, i.e., the model based on which we perform
the changes (cf. Section 7.5.1).

2. Variant Models. Based on a given reference model, we generate each vari-
ant by configuring the reference model according to the different scenarios
described in Section 7.5.3. For each group, we generate 100 variant models.
Note that although the 100 variants are generated based on the same sce-
nario, derived models are NOT the same. The scenario only describes the
probablistic features of the process variants, but not a particular variant.

3. Search results. We document both intermediate process models and the
final result obtained from our heuristic search. Corresponding change oper-
ations are documented as well. As example consider Fig. 7.9. It shows the
heuristic search result we obtain when mining the variants from Fig. 7.2.

4. Fitness and average weighted distance. Similar to the evaluation re-
sults presented in Table 7.2, we compute the values of fitness and average
weighted distance for each intermediate process model obtained during the
iterations of our heuristic mining algorithm. We additionally document
delta-fitness and delta-distance in order to examine the influence of differ-
ent change operations.

5. Execution time of our heuristic search algorithm.

106

7.6. SIMULATION RESULTS

7.6 Simulation Results

While Section 7.5 has described the setup of our simulation and related research
questions, this section addresses simulation results in respects to the four research
questions in detail.

7.6.1 Basic Performance Analysis

7.6.1.1 Improvement on Average Weighted Distances

For 60 of the 72 groups, we are able to discover a reference model that is different
from the original one. Average weighted distance of the newly discovered reference
model is 0.765 less than for the original reference model. When compared to
average weighted distance of the original reference process model, we obtain a
reduction of 17.92%.

7.6.1.2 Number of Change Operations

For 60 of the 72 groups (i.e., the groups for which we are able to discover a different
reference model) we perform in total 284 change operations (i.e., on average
4.73 change operations per group). These 284 change operations comprise 132
insert operations and 152 move operations; i.e., there is no significant difference
between the number of insert and move operations. This indicates that the two
operations are treated in a balanced way by our algorithm. Reason is that we
perform on average same number of insert and move operations when generating
a dataset group (cf. Section 7.5.3) and such trend is also shown during the
discovery of the reference model.

7.6.1.3 Execution Time

Obviously, the number of activities contained in the variant models can signifi-
cantly influence execution time of our algorithm; i.e., search space becomes bigger
for large models since the number of candidate activities being changed becomes
higher as well as the number of blocks becomes higher. We therefore analyze exe-
cution time of our algorithm taking into consideration the size of process models.
Average execution time is shown in Table 7.4.

small-sized medium-sized large-sized
Model sizes (i.e., # activities) 10 ∼ 15 20 ∼ 30 50 ∼ 75

Average search time (s) 0.184 4.568 805.539
Average # of applied changes 1.83 3.52 8.43

Average search time per change 0.111 1.338 98.992
S.Dev of search time per change 0.015 0.152 15.033

Table 7.4: Average execution time for process models having different size

107

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

While it takes only little time to discover the result for a collection of small-
and medium-sized models, it takes considerable longer time (on average 805.539
seconds) to find the result for a collection of large-sized models. One reason for
this is that the considered variant model become larger; another one is that search
steps take longer as well. We need to perform on average 8.43 change operations
on the original reference model to discover the end result. Reason is that the
variants in these groups are more different from each other than those in small-
and medium-sized models.4 As a consequence, the discovered model can be more
different from the original one. We additionally compute the mean and standard
deviation of search time per search step. Independent from process models’ size,
standard deviation of search time (per search step) is around 13.5%± 2% of the
average search time. This indicates that performance of our algorithm is quite
stable. Though it takes significantly longer when dealing with larger process
models, we believe execution time is acceptable considering the complexity of the
problem (also when comparing it with other data mining problems [181]).

7.6.2 Correlation of Delta-fitness and Delta-distance

As discussed, one important issue we want to analyze is how the fitness value is
correlated with average weighted distance. As discussed in Section 7.5, a fitness
value is only a ”quick guess” of how close a candidate model Sc is to the collection
of variants, i.e., it is not as precise as average weighted distance itself, and can
also not be perfectly correlated with the latter measure since its computation is
at NP-hard level.

Our heuristic search algorithm is a best-first approach, i.e., we search whether
we can find a process model with higher fitness value. Therefore, it is more use-
ful to measure how much delta-fitness (i.e., difference between the fitness values
before and after change) is correlated with delta-distance (i.e., difference between
average weighted distances before and after change). Note that it is the improve-
ment of the fitness value (delta-fitness) that guides search steps (cf. Section 7.4).
Another reason why we do not directly analyze correlation between fitness and
distance is their difference in value ranges. While fitness of a model has value
range [0, 1], average weighted distance has value range [0, +∞]. On the contrary,
delta-fitness and delta-distance both have value range [−1, 1]. Therefore, consid-
ering correlation between delta-fitness and delta-distance is more meaningful in
the given context. Similar techniques for evaluating fitness functions are widely
used when evaluating other heuristic or genetic algorithms [81].

Since every change operation leads to a particular modification of the process
model and consequently creates values for delta-fitness and delta-distance, we
obtain 284 data samples. Fig. 7.13 plots these data samples as (delta-fitness,
delta-distance)-pairs. For example, consider the search result from Table 7.2.
We can obtain four data samples for delta-fitness and delta-distance from it:
(0.143,0.9), (0.118,0.7), (0.039,0.6) and (0.009,0.25).

4The number of change operations is determined by the model size, i.e., we change 10%,

108

7.6. SIMULATION RESULTS

Good (Delta-distance > 0)
Bad (Delta-distance ≤ 0)

Small-sizedMedium-sizedLarge-sized
Size of Process Models

Delta-fitness

De
lta

-d
is
ta
nc

e

Figure 7.13: Delta-fitness and delta-distance pairs

In Fig. 7.13, the X-axis represents the delta-fitness value and the Y-axis the
one for delta-distance. All values for delta-fitness are larger than 0. Note that
our algorithm applies a change if and only if it can find a model with higher
fitness value. Opposed to this, delta-distance is not always greater than 0. This
indicates that sometimes the application of a change operation can make results
worse. This is not surprising since fitness value is only a ”quick” guess of aver-
age weighted distance. We additionally plot a line with delta-distance being 0
to separate ”good” samples (positive delta-distance) from ”bad” ones (negative
delta-distance).

Fig. 7.13 also marks data samples from groups of different model size sepa-
rately. Obviously, these three groups form three different clusters, i.e., they are
not overlapping too much with each other and the larger model size is, the more
corresponding data samples position towards the Y-axis. This indicates that pro-
cess model size can influence delta-fitness value. Reason is that the fitness value
of a process model is measured considering all its activities (cf. Formula 7.4).
Since a particular operation can only change one activity at a time, its influence
on fitness value (delta-fitness) is dependent on the number of activities in the
process model. Obviously, the less activities are contained in a process model,
the greater the influence of one change operation becomes. Therefore, it is more
reasonable to analyze correlation for groups of models with same size.

We use Pearson correlation to measure correlation between delta-fitness and

20% and 30% of activities to configure a variant (cf. Section 7.5.3)

109

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

delta-distance [174]. Let X be delta-fitness and Y be delta-distance. We obtain
n data samples (xi, yi), i = 1, . . . , n. Let x̄ and ȳ be the means of X and Y
respectively, and let sx and sy be the standard deviations of X and Y . Then,
Pearson correlation can be computed based on Formula 7.6.

rxy =
∑

xiyi − nx̄ȳ

(n− 1)sxsy

¨
§

¥
¦7.6

We further test whether correlations are significant, i.e., whether they signif-
icantly differ from 0 [174]. Results are summarized in Table 7.5.

Number Correlation Probability of Significantly
of data rxy = 0 Correlated?

Small-sized 33 0.762 <1.0E-8 Yes
Medium-sized 74 0.589 <1.0E-8 Yes
Large-sized 177 0.623 <1.0E-8 Yes

Table 7.5: Delta-fitness and delta-distance correlations of dataset groups having
different model sizes

Obviously, correlations obtained from all three groups are significant and high.
The high positive correlation between delta-fitness and delta-distance indicates
that if we can find a model with higher fitness value, we have high chances to
also reduce average weighted distance (i.e., to change the old model to the newly
discovered one). A correlation is normally considered being high if it is larger
than 0.5 [174]. In our case, all three groups show high correlations, especially
when being compared with most other heuristic or genetic algorithms. Note that
in most common cases correlations between fitness value and local optimum are
low or even negative [81].

7.6.3 Correlation Comparison

In Section 7.6.2 we have discussed correlation between delta-fitness and delta-
distance. Since it is important to evaluate performance of our algorithm, we also
want to know whether correlation changes when dealing with process models of
different size. This is important to know since it directly reflects on the scalability
of our algorithm. If correlations is independent from whether we deal with small
process models or large ones, scalability of our algorithm will be good (i.e., its
performance is stable when dealing with process models of different size.)

When only considering correlations from Table 7.5, it is difficult to derive any
trend. Here, lowest correlation value is obtained from the medium-sized models.
More important, since we have data samples from three groups, which have dif-
ferent size, the corresponding correlation should have different ”credibility”. For
example, the correlation derived from 177 data samples should be more reliable
than the one we can obtain based on 33 samples. To compare correlation val-

110

7.6. SIMULATION RESULTS

ues taking the size of the data sample into account, again we need to employ a
statistical approach.

Since the sampling distribution of Pearson correlation analysis is not normally
distributed, we first need to perform a Fisher’s Z transformation to covert Pear-
son correlation to a normally distributed variable [174]. Let r be a correlation.
Then we can perform Fisher’s Z transformation as follows:

Z(r) = 0.5× (ln(1 + r)− ln(1− r))
¨
§

¥
¦7.7

Distribution of Z(r) has two important properties: First, it is normally dis-
tributed. Second, it has a known standard error of 1√

n−3
where n equals the

number of data samples for computing Pearson correlation r. We can compare
difference between two correlations r1 (obtained from n1 data samples) and r2

(obtained from n2 data samples) as follows:

ρ(r1, r2) =
Z(r1)− Z(r2)√

1
n1−3 + 1

n2−3

¨
§

¥
¦7.8

Approximately, ρ(r1, r2) follows standard normal distribution [174]. Table
7.6 shows results that pairwise compare the three groups having different size. In
all three comparisons, correlations in Table 7.6 do NOT significantly differ from
each other; i.e., they are statistically the same. This indicates that performance
of our heuristic algorithm does NOT depend on the size of the models; i.e., the
algorithm can scale up in order to deal with large-sized process models, but
without sacrificing its performance.

ρ value Probability of being same Significant?
Small-sized VS. Medium-sized 1.51 0.130 Yes
Medium-sized VS. Large-sized -0.4 0.689 Yes
Small-sized VS. Large-sized 1.37 0.170 Yes

Table 7.6: Paired correlation comparison

7.6.4 Monotonicity Test

We now test whether our heuristic search algorithm applies the more important
change operations (i.e., changes having a higher delta-distance value) at the be-
ginning. For this purpose, we perform two tests. The first one shows whether and
to what degree we are able to reduce average weighted distance by only perform-
ing a limited number of change operations. In a second test, we want to analyze
whether delta-distance is monotonically decreasing.

7.6.4.1 Impact of the Top n% Change Operations

In our simulation we do not control search depth; i.e., our algorithm continues
cunning as long as better models can be discovered. As aforementioned, one

111

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

important feature of our algorithm is its ability to control how many change
operations shall be maximally performed during the discovery procedure. This
necessitates that most relevant changes should be performed first. Therefore, we
are interested in computing to what degree the first n% changes contribute to
reduce average weighted distance.

As example consider the search results from Table 7.2 (cf. Section 7.4.3).
We have performed in total 4 change operations to discover the best model. In
total, average weighted distance is reduced from 4.85 (using the original refer-
ence model S) to 2.4 (using the discovered model R4) (cf. Table 7.2). We can
analyze how important the changes applied at the beginning are by computing
to what degree they have reduced average weighted distance. For example, the
first change operation reduces average weighted distance by 0.9. Comparing this
with overall distance reduction of 2.45, we can already accomplish 0.9/2.45 =
36.73% distance reduction by performing only the top change operation. Since
in the given example there are only 4 change operations, we can claim that by
performing the top 25% of the change operations, we can accomplish 36.73%
distance reduction. This indicates how important changes applied at beginning
are. Clearly, the higher distance reduction is, the more important the respective
change is. Similarly, by analyzing delta-fitness, we can compute to what degree
fitness improvement can be accomplished by performing only the top changes.
Results are summarized in Table 7.7.

top 33.33% changes top 50% changes
Fitness gain 57.35% 74.60%
Distance gain 63.80% 78.93%

Table 7.7: Fitness and distance gains when only applying the top changes

In 55 (out of 72) dataset groups, more than 2 change operations are performed
during the search. Therefore, we are able to measure monotonicity. Table 7.7
summarizes average distance and fitness gains when applying the top 33.33%
and the top 50% change operations. Obviously, changes applied at beginning
are a lot more important than the ones performed at the end. For example, the
top 33.33% change operations contribute 63.80% distance reduction; while the
remaining 66.67% change operations only contribute to the remaining 36.20%
distance reduction. If we only performed the first half of the change operations,
we would already obtain around 80% distance reduction. This simple analysis
indicates that changes performed at the beginning are a lot more important than
the ones performed at the end.

7.6.4.2 Monotonically Decreasing Score

The approach described in Section 7.6.4.1 is an abstract one, i.e., we analyze the
importance of a collection of change operations applied at the beginning. We now
analyze whether or not a change operation performed first is really ”better” than

112

7.6. SIMULATION RESULTS

the one applied after it (i.e., whether delta-distance is monotonically decreasing
when including additional change operations).

Most of the monotonicity tests in data mining or artificial intelligence pro-
vide binary answers, i.e., the data sample is either monotonic or non-monotonic
[110, 181]. These monotonicity tests are too restrictive in our context since one
”problematic” data sample can counteract whole monotonicity test, especially
when considering the fact that a heuristic algorithm only enables reasonable
”guessing”. Restrictive statistical monotonicity test [20] can also not be applied,
since on average there are only 4.73 change operations applied per dataset group
(cf. Section 7.6.1). This number is too low to conduct any creditable statistical
analysis. Therefore, we apply following method for testing monotonicity.

For one dataset group, let S be the original reference model and S′ be the
discovered one. We obtain S[σ > S′ with σ = 〈∆1, ∆2, . . . ∆n〉 ∈ C∗ being a
sequence of changes performed on S during discovery of S′. Let xi, xj(i, j =
1 . . . n) be delta-distances of change operations ∆i and ∆j respectively. The
monotonically decreasing score µ can be computed as follows:

µ =

∣∣{(xi, xj)|(i < j) ∧ (xi ≥ xj)
}∣∣

n× (n− 1)/2

¨
§

¥
¦7.9

For a given sequence of change operations σ = (∆1, ∆2, . . . ∆n), µ measures
the monotonically decreasing score by comparing the delta-distances of every pair
of change operations ∆i, ∆j (i, j = 1 . . . n). If for two change operations ∆i, ∆j

with i < j (i.e., change operation ∆i is performed before change operation ∆j),
delta-distance xi is larger than or equal to xj , we consider change operations ∆i

and ∆j as monotonically decreasing. The monotonically decreasing score µ is then
measured by counting how many pairs of change operations are monotonically
decreasing. As example consider the results in Table 7.2. For every pair of change
operations ∆i and ∆j , i < j, corresponding delta-distance xi is larger than xj .
For this case, we obtain µ = 1, i.e., delta-distance of the change operations is
monotonically decreasing.

Following this design, every change operation is compared with the ones listed
after it in the sequence of applied changes. This way, the change operations per-
formed at the beginning have more influence on µ than the ones performed at
the end.5 Obviously we obtain µ ∈ [0, 1]: If µ = 1 holds, delta-distance will
be monotonically decreasing; if µ = 0 holds, delta-distance will be monotoni-
cally increasing. The higher µ is the more delta-distances will be monotonically
decreasing. Similarly, we can test monotonicity of delta-fitness. Results are sum-
marized in Table 7.8.

Besides average monotonic decreasing score µ, Table 7.8 shows average mono-
tonic decreasing score µ tolerating an error rate of 5%, i.e., if i < j and xi ≥
xj×(1−0.05), we still consider xi and xj as monotonically decreasing just to avoid

5Such feature is also employed in other data mining evaluation techniques (e.g., precision,
recall [181]).

113

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

average µ average µ with 5% error rate
Fitness 0.9942 0.9987

Average weighted distance 0.6682 0.6858

Table 7.8: Average monotonic decreasing score µ as obtained from the simulation

rounding errors. It becomes clear that delta-fitness is almost perfectly monoton-
ically decreasing while such trend in respect to delta-distance is not very strong.
This difference is due to the fact that correlation between these two values is not
perfect (i.e., it equals 1). Therefore, we cannot claim that delta-distance keeps
decreasing as the search continues.

In summary, monotonically decreasing of delta-distance is only strong at high
abstraction level, e.g., the top 1/3 change operations might accomplish around
2/3 of distance reduction (cf. Table 7.7). However, it is not very strong, when
comparing individual change operation with each other i.e., we cannot claim that
for all cases a change operation performed first is always better than the one
(directly) following it (cf. Table 7.8).

7.6.5 Influence of the Different Parameters on our Algo-
rithm

When configuring our datasets we consider the aforementioned parameters: size
of process models, similarity between process models, activity consistency and
activity occurrence (cf. Section 7.5). In this section, we analyze the influence of
these parameters on the overall performance of our algorithm.

For a particular dataset group, we discover its new reference model by stepwise
performing a number of change operations on the original one. Consequently, we
obtain a collection of data samples in the form (delta-fitness, delta-distance) (cf.
Fig. 7.13), of which some might be ”bad” ones having negative delta-distance
value (cf. Fig. 7.13). Clearly, the less ”bad” samples are, the better our algorithm
performs. To quantitatively evaluate this performance, we use π as ratio of ”good”
samples to indicate its performance. When considering the results from the 72
dataset groups, we obtain on average π = 65.14%.

We therefore divide the 72 dataset groups based on the (finite) value ranges of
the four parameters. Since Parameter 1 (size of process model) has three possible
values (i.e., small-size, medium-size and large-size), for example we can divide the
dataset groups into three clusters. Each cluster then contains 24 dataset groups
having same process models size. We compute mean and standard deviation of π
in each of the three clusters. Similarly, we can divide the dataset groups based on
the value ranges of the other parameters. Results are summarized in Fig. 7.14.

We first analyze the influence of the size of process models on our algorithm.
When measured it using average of π, we can obtain that performance decreases
as the size of process model increases. We discuss the reasons for this and also how
we can improve performance of our algorithm in Section 7.6.6. In general, delta-

114

7.6. SIMULATION RESULTS

Positive correlated
0.923 0.766 0.743 0.581
0.117 0.346 0.331 0.426

N/A 0.706 0.513 0.945
N/A 0.324 0.237 0.090

Small Medium Large
0.843 0.804 0.600
0.336 0.248 0.314
18 21 21

0.740 0.773 0.719
0.371 0.272 0.312
18 21 21

Divided by Size Divided by Similarity

Divided by Occurrence and Consistency Scenarios

Mean
S. Dev
of Data

Mean
S. Dev
of Data

Mean
S. Dev
of Data

Small Medium Large

9 9 9 8 0 9 8 8

Negative correlatedFocus on “move” Focus on “insert” Low occurrence High occurrence High consistencyLow consistency
Figure 7.14: Influence each parameter has on the performance of our algorithm

fitness value can be influenced by the size of process models, and consequently
the groups with the size of process model being ”large” might contain more data
samples with low delta-fitness value. This becomes more clear in Section 7.6.6.
In particular, we show that low delta-fitness increases the chance of having a bad
data sample.

On the contrary, similarity between process models does not influence perfor-
mance of our algorithm. In all three groups the average of π is around 0.75. In
our simulation, we do not separate parameters activity occurrence and activity
consistency when generating the dataset groups. Instead, we use 8 different sce-
narios to jointly analyze the influence of these two parameters. Fig. 7.14 presents
the mean and standard deviation of π in respect to the 8 scenarios.

Results correspond to our analysis depicted in Fig. 7.11. Our algorithm per-
forms better than average (i.e., we obtain high average π value) when dealing with
situations in which activities either have high occurrence as well as high consis-
tency, or low occurrence as well as low consistency. For example, our algorithm
performs better than average in scenario ”positive correlated”, where occurrence
is positively correlated with consistency. However, when dealing with the scenar-
ios where activity consistency and occurrence are both not high, performance of
our algorithm is less optimal. For example, in scenario ”negatively correlated”
where occurrence is negatively correlated with consistency, we obtain one of the
lowest results.

Regarding a collection of process variants, except Parameter 1 (i.e., the size of
process models), which can be easily determined, the other three parameters are
costly to compute. In particular, we need to compute distance and bias between
the original reference model and every process variant in order to determine the
other three parameters. Note that computing these biases and distances has
NP-hard complexity (cf. Def. 9). In our simulation, we are able to obtain such
information only because we have generated the datasets ourselves. In particular,
this indicates that for a given collection of process variants, but non-availability
of other information, it is difficult to predict how our algorithm can perform.

115

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

However, we can roughly estimate the parameters based on the performance
(measured by π) of our algorithm. For example, if we can identify a lot of ”good”
points while only few ”bad” points exist during the search, we could expect both
activity occurrence and activity consistency being potentially high in the given
variant collection. Admittedly, such estimation is not very precise.

7.6.6 Pruning Threshold Training

If we revisit our delta-fitness and delta-distance graph as plotted in Fig. 7.13, it
becomes clear that there are still some ”bad” data points. Those are the points
with positive delta-fitness, but negative delta-distance. Though these bad data
points can never be prevented due to the nature of heuristic algorithms, we can
at least reduce them, i.e., reduce the chance that they appear.

When analyzing these ”bad” points, we can find them most time at the down-
left corner of the chart. This indicates that if delta-fitness is low, the chance
of getting a negative delta-distance will get bigger. In order to quantitatively
evaluate this, we introduce precision here. Let X be delta-fitness and Y be delta-
distance. We obtain n data samples (xi, yi), i = 1, . . . , n. Given a delta-fitness
value x, we can compute precision p(x) as follows:

p(x) =

∣∣{(xi, yi)|(xi ≥ x) ∧ (yi > 0)
}∣∣

∣∣{(xi, yi)|xi ≥ x
}∣∣

¨
§

¥
¦7.10

Given delta-fitness value x, precision p(x) measures the ratio of ”good” data
samples (with delta-distance being larger than 0) among data samples with delta-
fitness value larger or equal to x. The higher p(x) is, the more ”good” sample we
have. Note that precision is widely used in fields like information retrieval [14]
and data mining [181]. Fig. 7.15 depicts precision value p(x) for different values
x of delta-fitness.

0.5

0.6

0.7

0.8

0.9

1

1.1

0 0.02 0.04 0.06 0.08 0.1 0.12

deltaFitness

P
re

ci
si

o
n

Figure 7.15: Delta-fitness and precision chart

From Fig. 7.15, it becomes clear that, the lower delta-fitness is, the lower
precision will be. When considering only data samples with delta-fitness being
larger than 0.0401, all corresponding delta-distance values are positive, i.e., all

116

7.6. SIMULATION RESULTS

them are all ”good” samples. Precision keeps reducing until 65.14% when consid-
ering all data points (i.e., x = 0). This indicates that many ”bad” data samples
occur with low delta-fitness values.

Precision analysis indicates that we can probably improve our heuristic min-
ing algorithm by determining a threshold value for delta-fitness. Since most of
the ”bad” data samples are obtained with low delta-fitness values, we only al-
low performing a certain change in case delta-distance value is larger than this
threshold value. In the following we introduce two approaches for discovering
such threshold based on our simulation data.

7.6.6.1 Classification Tree

We first introduce an approach using classification trees [138]. By learning from
the ”good” and ”bad” data samples, we should be able to classify them by a
threshold delta-fitness value. Let X be the delta-fitness and Y be the delta-
distance. We obtain n data samples (xi, yi), i = 1, . . . , n. To each data sample
we can assign a binary value zi being ”TRUE” or ”FALSE” depending on the
value of yi. If yi > 0 holds, zi is set to TRUE, otherwise, zi is set to FALSE. We
therefore can build a classification tree using delta-fitness xi and binary variable
zi. We choose algorithm C4.5, which is one of the most popular classification
algorithms to build the classification tree [138], and use Weka, which is one of the
most popular open-source data mining tools, to compute the result [228]. Details
about this classification algorithm and the data mining tool are out of the scope
of this thesis. However, note that these are standard methods to perform such a
classification. The resulting classification tree is shown in Fig. 7.16.

Delta Fitness

TRUE (234/61)FALSE (50 / 12)

> 0.001516<= 0.001516

(# of total data samples / # of incorrectly classified ones)
Figure 7.16: The classification tree build based on delta-fitness values

The simple classification tree has divided the data samples into two groups
based on the values of delta-fitness. When delta-fitness xi of a certain data
sample (xi, yi) is less or equal 0.001516, the classification tree will classify it as
FALSE, i.e., it is more likely to be a ”bad” data sample with delta-distance
lower than 0. On the contrary, if xi is larger than 0.001516, it is more likely to
be a ”good” data sample. The classification tree is also not 100% precise: 12
out of 50 data samples with delta-fitness lower than 0.001516 actually provide
positive delta-distance while 61 out of 234 data samples with delta-fitness larger
than 0.001516 provide negative delta-distance values. Though the classification

117

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

tree is not perfectly precise, it is one of the best ones we can build purely based
on the delta-fitness value.

The discovered threshold 0.001516 therefore can help us to improve perfor-
mance of our heuristic algorithm. More precisely, we should only apply changes
for which improvement of the fitness value is larger than the given threshold.
For this case, we expect reducing the chance of performing a wrong change (a
change which even enlarges average weighted distance between discovered model
and variants (negative delta-distance)). If we filter the data sample using this
threshold value for delta-fitness, we can increase precision of the whole data sam-
ple from 65.14% to 73.93% and further reduce average weighted distance. More
precisely, if we do not set any threshold average weighted distance per group is
reduced by 0,765 (17.92% reduction compared to the original reference model).
By contrast, if we set the above mentioned threshold, we can reduce average
weighted distance by 0.879 (20.84% distance reduction compared to the original
reference model); i.e., using such threshold can lead to better search results (i.e.,
higher distance reduction). In summary, we can discover better models by setting
a threshold value to guide our heuristic search.

7.6.6.2 Determining Threshold Based on Overall Distance Gain

In Section 7.6.6.1, we have discussed a standard data mining approach to im-
prove our algorithm, while in this subsection we introduce a more intuitive and
straightforward approach to discover a threshold value. One disadvantage of the
above mentioned classification tree is that it cannot consider importance of a
”good” or a ”bad” data sample. The threshold is trained by a binary decision
variable zi which is either TRUE or FALSE. It does not consider how much
TRUE or how much FALSE by directly measuring average weighted distance
value. Here, we introduce a method to discover a threshold by considering delta-
distance value. Let X be delta-fitness and Y be delta-distance. We obtain n data
samples (xi, yi), i = 1, . . . , n. Given a delta-fitness value x, we can compute η(x)
as follows:

η(x) =
n∑

xi≥x,i=1

yi

¨
§

¥
¦7.11

η(x) measures the sum of the delta-distance values after filtering out those
data samples with delta-fitness being lower than a given threshold x. Regarding
our dataset, Fig. 7.17 depicts the curve of η(x) according to the value of x. We
specially zoom the part with x being contained in interval [0, 0.006].

η(x) keeps increasing as x decreases. This is easy to understand since the
lower x is, the less data samples will be filtered out. However, η(x) reaches its
maximum of 51.72 when x equals 0.0014, and starts to decrease as x decreases.
This indicates that in interval [0, 0.0014) of delta-fitness, there are more data
samples with negative delta-distance. If 0.0014 is used as threshold value to
guide our heuristic search (i.e., we only perform a change if the improvement

118

7.7. SUMMARY

0102030
405060

0 0.05 0.1 0.15 44454647484950
515253

0 0.002 0.004 0.006 0.008
Delta fitnessSu

m
 o

f d
el

ta
 d

ist
an

ce
s

ab
ov

e
ce

rta
in

 d
el

ta
 fi

tn
es

s
va

lu
e

(0.0014, 51.72)

Figure 7.17: Delta-fitness x and its corresponding η(x)

of fitness value is larger than 0.0014), we can further reduce average weighted
distance from 0,765 (17.92% reduction compared to the original reference model)
per group to 0.892 (20.85% distance reduction compared to the original reference
model) per group. This indicates that using such threshold can lead to better
search results (i.e., higher distance reduction). The corresponding precision will
increase from 65.14% to 73.22%.

Note that the threshold value obtained by our simulation data is a case-
specific one. It cannot be generalized that using these threshold values always
improves performance of our algorithm. However, it is useful to perform such
analysis in the context of this thesis in two respects. First, we indicate that for
lower delta-fitness value the algorithm bears higher chance of performing a wrong
change. Consequently, the user should be careful when discovering a model with
only slightly better fitness value. Second, using the suggested approaches, a user
can obtain their own threshold value based on their own dataset. We present the
corresponding training method in this thesis just to provide a guideline on how to
apply and/or improve our heuristic mining algorithm to a domain-specific field,
i.e., user can obtain a threshold value to make our heuristic mining algorithm
work better in context of their specific problem.

7.7 Summary

This chapter provided a heuristic search algorithm that supports the discovery of
a block-structured reference process model by learning from a collection of block-
structured process variants. Adopting the discovered model as new reference
process model will make process configuration easier; i.e., it will require less efforts
to configure these variants (measured in terms of the number of required change
operations). In particular, our heuristic algorithm can also take the original
reference model into account such that the user can control to what degree the
discovered model is different from the original one. This way, we cannot only
avoid spaghetti-like process models but also control how many changes we want

119

CHAPTER 7. CONTROLLING THE EVOLUTION OF REFERENCE
PROCESS MODELS: A HEURISTIC APPROACH

to perform. Our algorithm can automatically determine which activities shall be
considered in the reference model. Filtering or pre-analysis of the activity sets
are not needed in this context.

We evaluated our algorithm by performing a comprehensive simulation. Based
on our simulation results we can draw the following conclusions:

1. The fitness function of our heuristic search algorithm is correlated with
the average weighted distance with a high correlation value. This indicates
good performance of our algorithm since the approximation value we use
to guide our algorithm is nicely correlated to the real one.

2. Our algorithm can scale up. Its performance, which is measured based on
the correlation between fitness and distance, is independent from the size
of the process models.

3. When discovering the new reference model by changing the original one, the
more important changes, which largely reduce average weighted distance
to the variants, are performed at the beginning. Our simulation results
indicate that the first 1/3 of the applied changes result in about 2/3 of
overall distance reduction.

We also discussed two approaches for further improving the performance of our
heuristic search algorithm by learning an appropriate threshold value. Though
the results must not be generalized to all cases, the suggested approach can also
support users to adapt our algorithm to a domain-specific context. In Chapter 9,
we will discuss how we successfully applied our heuristic algorithm to a real-world
scenario.

120

Part III

Validation & Discussion

121

8
Algorithm Comparison

8.1 Introduction

In Chapters 6 and 7 we have introduced two algorithms for discovering a reference
process model based on a given collection of process variants. Each algorithm has
its specific properties and is particularly suitable for a certain scenario. In this
chapter we compare the two algorithms qualitatively as well as quantitatively. In
particular, we aim at answering our fifth research question (cf. Section 1.2):

What are characteristic properties of the solution approaches we propose for
supporting process variant mining? Under which circumstances is one approach
better suited than the other?

The remainder of this chapter is organized as follows. Section 8.2 describes the
proof-of-concept implementation of our algorithms. Section 8.3 then provides the
results of a qualitative as well as quantitative comparison between the developed
algorithms. We systematically compare our algorithms with traditional process
mining techniques from both a behavioral and structural perspective in Section
8.4. Finally, Section 8.5 concludes with a summary.

8.2 Proof-of-Concept Prototype

Figure 8.1 depicts the architecture of our system for process variant mining. We
apply the ADEPT2 Process Template Editor [148, 144, 143] for creating and vi-
sualizing process variants. For each process model, the editor can generate an
XML (eXtensible Markup Language [234]) representation with all relevant infor-
mation (like nodes, edges, blocks) being marked up. We store created variants
in a variant repository (cf. Fig. 8.1) which can be accessed by our mining algo-
rithms. According to the XML schema of the process editor, we use the Model
Reader component to transform a process model into its order matrix and we
apply the Model Writer component to transform an order matrix back into a
process model (cf. Chapter 4).

Based on order matrices, we can measure the distance between two process
models (cf. Chapter 5). We can further use order matrices when mining process

123

CHAPTER 8. ALGORITHM COMPARISON

ADEPT

Trace
EnumeratorModel Reader

Interface

Model Writer

ProM

Order Matrix

Miner
Clustering
Miner

Heuristic
Miner

Simulator

Scenario
Generator

Variant
Generator

Analyzing Report

Distance
Measurements

SPSS

Trace Set

Process variant mining system

Process models

Users

Figure 8.1: Architecture of process variant mining system

variants. In this context, we implemented and tested both the clustering algo-
rithm (cf. Chapter 6) and the heuristic algorithm (cf. Chapter 7) using Java.
The models we obtain when applying our algorithms is stored in the variant
repository.

Through Interface users can set parameters for our mining algorithms (e.g.,
search limitations for our heuristic algorithm). Further, they can configure the
Simulator component. The latter has been designed for simulation purposes
(cf. Chapter 7) and is used to test the performance of our algorithms. The
Simulator component consists of the two sub-components Scenario Generator
and Variant Generator. We use the former to configure the parameters of each
dataset group (cf. Section 7.5) and apply the latter for configuring the particular
variants. The generated process variants are stored in the repository and can be
analyzed at any time by applying our mining algorithms.

After running the Miner, Simulator or Distance Measurement components,
the obtained results are stored in Analyzing Report. Depending on which func-
tion we call, this report contains information like average weighted distance of the
discovered process model or delta-fitness and delta-distance after the application
of each change operation suggested by our heuristic algorithm. The report is or-
ganized in a way that it can be directly accessed by statistical analysis software.
In the context of this thesis we applied the SPSS [179] package, which is one of
the most popular tools for statistical analysis. In this way, we can directly per-

124

8.3. COMPARING THE ALGORITHMS FOR PROCESS VARIANT
MINING

form analysis like the Pearson correlation test (cf. Section 7.6) when evaluating
performance or testing the properties of our algorithms.

In addition, we implemented a Trace Enumerator which can enumerate all
traces producible by a process model (we discuss details in Section 8.4). The enu-
merated traces are formated according to MXML1[64, 201] which can be directly
accessed by ProM [201]. ProM is one of the most popular open source tools for
process analysis which covers a large spectrum of topics and particularly focuses
on process mining [195]. By using ProM we can compare our algorithms with
well-known process mining algorithms (cf. Section 8.4) to discover the pros and
cons of the different algorithms. The connection to ProM further provides the
foundation for integrating our algorithms with process mining algorithms so that
we can nicely balance between structure and behavior [61, 62]. Indirectly, we can
connect ADEPT, which is one of the most mature process management systems
supporting dynamic process changes (cf. Section 2.3), and ProM, which is one of
the most popular tools fostering process analysis and process mining.

We believe that the presented process variant mining system provides an im-
portant step forward towards full process life cycle support for dynamic processes
[213].

Figure 8.2: Screenshot of the prototype

8.3 Comparing the Algorithms for Process Variant
Mining

In the following, we systematically compare the two algorithms we developed.
1MXML is the input format of ProM.

125

CHAPTER 8. ALGORITHM COMPARISON

8.3.1 Qualitative Comparison

Inputs and Goals. Fig. 8.3 illustrates how our heuristic mining algorithm
differs from the clustering one in respect to goals and inputs. Fig. 8.3 represents
each process variant Si as single (white) node in the two dimensional space. Our
heuristic algorithm tries to discover a new reference process model by performing
a sequence of change operations on the original reference model. In particular,
it balances two ”forces”: one is to bring the new reference model Sc closer to
the variants (i.e., to the bull’s eye Snc at the right); the other force is to not
”move” it too far away from the original reference model S, i.e., Sc should not
differ too much from S. Our heuristic algorithm provides such flexibility by
allowing process engineers to set a maximum search distance. Our simulations
(cf. Section 7.6) showed that the change operations that are applied first to the
(original) reference model are more important than the ones positioned at the
end; i.e., they reduce the distance between reference model and variants more.
Consequently, when setting maximal search distance to filter out less important
changes at the end, we do not influence overall distance reduction too much.

No
constraint

Snc : Search result
without constraint

Si
:Variants

d=1d = 2d = 3 S: Original
reference

model

Reference model discovered heuristic searchOriginal reference model Process variants Intermediate search result Search steps
Sc:

Search
result with
constraint

Force 1:
close to variants

Force 2:
close to reference

Sclu : result by
clustering
algorithm Clustering

Approach

Heuristic Search Approach Reference model discovered by clustering approach
Figure 8.3: High-Level overview of the two algorithms

While the above scenario presumes knowledge of the original reference model
(Scenario 2 in Fig. 1.3), we also must cope with cases in which there exists only
a collection of process variants, but no original reference process model is known
(Scenario 1 in Fig. 1.3). The goal of our clustering approach therefore purely is to
discover the ”center” of the variants, i.e., a reference process model with shortest
average weighted distance to the variants. In particular, no knowledge about the
original reference model is required. In principle, it is also possible to apply our
heuristic algorithm to this scenario. We just need to start with an ”empty” model

126

8.3. COMPARING THE ALGORITHMS FOR PROCESS VARIANT
MINING

S and do not set any search limitation.2 However, since we do not need to balance
the two forces and to perform the important change operations at the beginning
of the search, the clustering algorithm is expected to be faster and to provide
additional information on the search result. We discuss this quantitatively in
Section 8.3.2.

Design Principles. Our heuristic algorithm discovers a better reference
model by applying a sequence of change operations to the original one. To enable
quick decisions on a large search space, we use a fitness function (cf. Section
7.3) to evaluate how well a candidate model fits to the variants. This fitness
function only provides a global evaluation, but does not show how good each
part of the candidate model fits to the variants. On the contrary, the clustering
algorithm discovers a reference process model by enlarging blocks. By evaluating
separation and cohesion, we are able to determine how well each part of the
discovered reference model fits to the variants; i.e., due to its different design the
clustering algorithm returns more information than the heuristic one.

Complexity of the two algorithms differs as well. Despite polynomial com-
plexity of computing the fitness of a candidate model, worst case, enumerating
all blocks in a candidate model has 2n complexity, where n corresponds to the
number of nodes in its process structure tree.3 On the contrary, our clustering
algorithm has polynomial complexity since computing separation and cohesion
is both polynomial. To be more precise, if n corresponds to the number of ac-
tivities and m to the number of variants, complexity of the clustering algorithm
is O(n2m + n3). This implies that the clustering algorithm can quickly com-
pute the reference process model of a large collection of process variants, while
the heuristic algorithm may take considerable longer. We present a quantitative
comparison in Section 8.3.2.

Pros & Cons. The differences between the two algorithms are summarized
in Table 8.1. Additional attention should be paid to their pros & cons. Since
the clustering algorithm has polynomial complexity, it runs significantly faster
than the heuristic algorithm. Using Separation and Cohesion, we obtain infor-
mation about how each part of the discovered reference process model fits to the
variants. However, our clustering algorithm cannot control the discovery proce-
dure or distinguish important changes from less relevant ones as our heuristic
algorithm does. Based on our illustrative example, our clustering algorithm can
discover same process model (cf. Fig. 6.8) as our heuristic algorithm (cf. Fig.
7.9) when choosing the threshold value from interval [0.6,0.8). In many other

2Here, we have the assumption that the process model, based on which our heuristic algo-
rithm starts, does not influence the search result. We will systematically test this property in
our future work.

3This worst-case scenario will only occur if any combination of activities may form a block
(like a process model for which all activities are ordered in parallel to each other). In this
case, the number of blocks containing one activity is C1

n, the number of blocks containing
two activities is C2

n, and the number of blocks containing m(m ≤ n) activities is Cm
n . When

summing them together, we obtain in total
∑n

m=1 Cm
n = 2n blocks. However, during our

simulations, in most cases we were able to enumerate all blocks of a process model within
milliseconds. This indicates good performance in practice.

127

CHAPTER 8. ALGORITHM COMPARISON

cases the discovered model was less optimal for the clustering algorithm since its
search space is considerably smaller.

Clustering Algorithm Heuristic Algorithm
Input Collection of process variants. Collection of process variants +

original reference process model
Goal Discover reference process model

with shortest average weighted dis-
tance to the variants

Discover better reference process model
with maximum distance to the original
one

Use cases Scenario 1 (cf. Section 1.2). Scenario 2 (cf. Section 1.2).
Design
principle

Local view: Discover reference pro-
cess model by enlarging blocks

Global view: Discover reference process
model by searching for better candidate
models

Complexity O(m2n + m3)
(m : # activities; n : # variants)

Sub-steps contain NP-hard problems

Pros & 1. Runs very fast 1. Automatically selects the activity set
Cons 2. Provides local view on how each

part of the reference process model
fits to the variants

2. Can control the maximum distance be-
tween the original reference process model
and the discovered one

3. Activity set can be flexibly chosen
by user

3. Applies more important changes at the
beginning

Table 8.1: Qualitative comparison between clustering and heuristic algorithms

8.3.2 Quantitative Comparison

We now compare our two algorithms quantitatively by analyzing how fast they
run and how good the discovered models are. We use the same data for this
comparison as for the evaluation of our heuristic algorithm (cf Section 7.5).

We generated 72 groups of datasets representing different scenarios. Each
group contains 1 reference process model and 100 process variants (cf Section 7.5).
Based on this, with each algorithm we discovered a new reference process model.
We documented execution time as well as the average weighted distance between
the resulting reference process models and the variants. Results are summarized
in Table 8.2, which indicates that the clustering algorithm runs significantly faster
than the heuristic one. However, the reference model discovered by the heuristic
algorithm has shorter average weighted distance to the variants than the one
discovered by the clustering algorithm. On average, the average weighted distance
of the model discovered by the heuristic algorithm, is about 81% to 87% of the
one discovered by the clustering algorithm.

Average execution time Average weighted distance
of activity Clustering Heuristic Heuristic algorithm /
per variant Algorithm Algorithm Clustering algorithm

Small-sized 10 - 15 0.013 0.184 86.25%
Medium-sized 20 - 30 0.022 4.568 87.11%
Large-sized 50 - 75 0.181 805.539 81.03%

Table 8.2: Performance comparison between clustering and heuristic algorithm

128

8.4. COMPARISON WITH EXISTING PROCESS MINING ALGORITHMS

8.4 Comparison with Existing Process Mining Algo-
rithms

Process mining has been extensively studied in literature. As discussed in Section
2.5, its key idea is to discover a process model by analyzing execution behavior of
process instances as captured in execution logs. The latter typically document the
start/end of each activity execution, and therefore reflect behavior of implemented
processes. As further discussed in Chapter 3, process mining techniques can be
applied in our context as well. Consider our example from Fig. 7.8. For each
process variant Si, we can first obtain its trace set TSi by enumerating all traces
producible on Si [230]. If a process model contains loop structures (i.e., it can
generate an infinite number of traces) we assume that a loop-block is executed
either once or twice. Despite this simplification, the number of traces producible
by a process model can still be extremely large; e.g., if a parallel branching
compromises five branches, of which each contains five activities, the number of
producible traces is (5 × 5)!/(5!)5 = 623360743125120. This explains why we
conduct the comparison only in small scale.4

The trace sets generated for the variants are merged into one trace set T
taking the weight of each variant into account. As example consider Fig. 7.2. As
S1 accounts for 25% of the variants, we ensure that each trace producible by S1

has the same number of instances and the sum of all instances producible by S1

accounts for 25% of the instances in T as well. We consider T as execution log
since it fully covers the behavior of the given variant collection.

Since all activities captured in an execution log will be included in most the
discovered process model by process mining algorithms (same as our clustering

4Note that the main goal of process mining algorithms is to discover a process model based
on the traces captured in the execution log (cf. Section 2.5). In most cases, an execution
log only captures a small fraction of the traces producible by the underlying process model
[195]. This means that process mining techniques do not really require enumerating all traces
producible by a process model for further analysis. In the context of our algorithm comparison,
we decide to enumerate all traces producible by each variant for the following two reasons:

1. In the context of our research, we do not assume the existence of an execution log.
However, most process mining evaluation criteria rely on traces, e.g., fitness, successful
execution, proper completion, and behavioral appropriateness (cf. Section 8.4.1). There-
fore, we adopted a general approach to first enumerate all traces and then to discover a
process model. This way, we were able to compare all related mining algorithms based
on the same approach.

2. As an alternative approach, we can randomly enumerate a collection of traces producible
by a process model, and consider these random traces as an execution log which partially
reflects the behaviors of the process model. One challenge in this context is that we are
not aware of any technique which can enumerate a representative set of traces (but not
all traces) to express the behavior of a process model. If we purely use a random fraction
of traces, we cannot ensure a fair comparison because the results might significantly
depend on the randomly selected trace set. Therefore, we decide to enumerate all traces
producible by a process model. In this way, we ensure that all possible behavior is
considered, and the results are not influenced by randomness.

129

CHAPTER 8. ALGORITHM COMPARISON

algorithm), we introduce two additional datasets. In the first one, we filter out
all activities aj whose activity frequency g(aj) is lower than 0.2 in the variant
collection (cf. Def. 12); e.g., in our example activity Z in S5 as well as silent
activity τ (representing the loop in S4) are ignored (cf. Fig. 7.2). For this
extended data set, we can determine trace set T0.2. In the second additional
dataset, we filter out activities whose activity frequency is lower than 0.6. Re-
garding our example, besides Z and τ , we then additionally filter out activity
Y in S2, S3, S5, and S6 (cf. Fig. 7.2). Consequently, we obtain trace set T0.6

which contains all traces producible by the reduced variants. Note that T0.6 has
same activity set as the model discovered by our heuristic algorithm (cf. R4 in
Fig. 7.9). The enumerated trace sets T , T0.2 and T0.6 are imported into the
ProM framework. In our comparison, we consider alpha algorithm [197], heuris-
tic miner [221], genetic algorithm [39] and multi-phase miner [200]. These are
well-known algorithms for discovering process models from execution logs. Fig.
8.4 shows three Petri Net models discovered by different algorithms based on
different data sets. The enumerated trace sets T , T0.2 and T0.6, as well as the
process models discovered by different algorithms based on them are available at
http://wwwhome.cs.utwente.nl/~lic/Resources.html.

8.4.1 Evaluation Criteria

Our algorithms focus on the structural perspective of process models, i.e., our goal
is to configure the variant models out of a reference model with minimal efforts
(i.e., with minimal number of high-level changes). On the contrary, traditional
process mining focuses on process behavior, i.e., the discovered process model
should cover the behavior of the variant models (as reflected by their trace sets)
[197, 39, 200, 221]. In the following, we compare our algorithms with existing
process mining algorithms from both a structural and a behavioral perspective.

Since most existing process mining algorithms are either based on Petri Nets
or EPCs, we transform the process models discovered by the different algorithms
either into Activity Nets, Petri Nets or EPCs in order to enable a better compari-
son (see [40, 230] for respective transformation techniques). Such model transfor-
mation enables us to apply existing metrics [168, 113] and tools [201] for process
model evaluation instead of introducing new ones. We briefly describe the met-
rics applied in this context and refer [168, 113, 201] for details. In the following
we first introduce three parameters to evaluate the structure of process models,
namely average weighted distance, structural appropriateness, and # splits/joins
in EPC.

1. Average weighted distance measures the efforts to configure the pro-
cess variants out of the discovered reference process model. The lower this
parameter is the easier the variants can be configured (cf. Chapter 5).

2. Structural appropriateness measures the complexity of a Petri Net by
computing the ratio between labeled transitions and nodes (transitions and

130

8.4. COMPARISON WITH EXISTING PROCESS MINING ALGORITHMS

Heuristic(T)X

E
F

A

J

Y
B

G H
C Z D

I

Genetic(T0.6)
A

E
X

F

C
D

B

J

I

H G

Alpha(T0.2)E

X

A

F

J

Y

B

C

G

D
I

H

Figure 8.4: Example process models discovered by process mining algorithms

places) [168]. The value range of this parameter is [0,1]; the higher this
value is, the simpler the Petri Net will be.

3. # Splits/Joins in EPC measures the number of splits and joins as con-
tained in an Event Process Chain (EPC). It can be used to measure the
complexity of an EPC [113]. The higher this parameter is, the more choices
end users need to make when executing the process model and the more
complex the respective EPC will be.

We additionally use four parameters to evaluate the behavior of discovered
process models: behavior fitness, successful execution, proper completion, and
behavioral appropriateness.

131

CHAPTER 8. ALGORITHM COMPARISON

1. Behavior fitness evaluates whether the discovered process model, which
is represented as Petri Net, complies with the behavior as captured in the
execution log [168]. One way to investigate behavior fitness is to replay the
log on the Petri net. This is done in a non-blocking way; i.e., if there are
tokens missing to fire a transition in the discovered model, they are artifi-
cially created and replay proceeds [168]. The value range of this parameter
is [0,1]. The higher behavior fitness is, the better the discovered model will
cover the given trace set.

2. Successful execution measures the percentage of traces in an execution
log that can be successfully executed by the discovered process model [168].
The value range of this parameter is [0,1]. The higher it is, the more traces
in the execution log can be re-produced based on the discovered model.

3. Proper completion measures the percentage of traces in an execution log
that lead to proper completion [168]. Compared to ”successful execution”
this parameter further requires that the analyzed process model reaches an
end state after replaying a trace. The value range of this parameter is [0,1].
The higher it is, the more traces from the execution log will result in proper
completion.

4. Behavioral appropriateness measures to what degree the discovered pro-
cess model allows ”extra” behaviors, i.e., the behaviors which are allowed by
the process model but are not observed in the execution log [168]. Similar
to behavior fitness, we can evaluate behavioral appropriateness by replay-
ing the log on a Petri Net. The value range of this parameter is [0,1]. The
higher it is, the less ”extra” behavior is allowed by the discovered process
model [168].

8.4.2 Evaluation Results

Our evaluation results are summarized in Table 8.3. To differentiate our heuristic
algorithm from the heuristic miner as known from process mining [221], we denote
our heuristic algorithm as ”Heur. Var.” in Table 8.3. Note that behavior appro-
priateness is not included in Table 8.3 because in several cases the conformance
checker in ProM cannot measure the behavior appropriateness of the discovered
process models5 in a reasonable time (e.g., within a couple of days).

It is not surprising that both our heuristic and our clustering algorithm are
able to discover a process model of simple structure. Independent from which
dataset we use, the process models discovered by our two algorithms have better
scores for all three parameters relating to the structure of the discovered model;

5not only the models resulting by Multi-Phase miner
6We manually transformed Petri Net or EPC models into block-structured process models

to measure their average weighted distance to the variants. To ensure the resulting models are
not overly complex, some trivial behaviors of the Petri Net or EPC models are not considered.

132

8.4. COMPARISON WITH EXISTING PROCESS MINING ALGORITHMS

Structure measurement Behavior measurement
Data-
set

Algorithms Average
weighted
distance6

Structural
appropri-
ateness

Joins/
splits in
EPC

Behavior
fitness

Successful
execu-
tion

Proper
com-
pletion

Heur. Var. 2.4 0.481 6 0.876 0.353 0.353
Clustering 4.75 0.468 8 0.737 0.120 0.120
Alpha 8.55 0.441 15 0.646 0 0

T Heuristic 8.85 0.258 31 0.437 0.042 0
Genetic 6.6 0.341 19 0.811 0.342 0.009
Multi-phase 2245 arcs, 515 transitions 19 In theory, all equals 1
Heur. Var. 2.4 0.481 6 0.886 0.382 0.382
Clustering 2.6 0.482 6 0.784 0.133 0.133
Alpha 6.9 0.466 12 0.706 0 0

T0.2 Heuristic 8.2 0.274 12 0.789 0.268 0
Genetic 5.9 0.424 13 0.846 0.460 0.009
Multi-phase 1534 arcs, 384 transitions 18 In theory, all equals 1
Heur. Var.

2.4 0.481 6 0.851 0.327 0.337
Clustering
Alpha 6.85 0.5 7 0.814 0.407 0

T0.6 Heuristic 7.85 0.462 10 0.736 0.407 0
Genetic 3.2 0.325 13 0.886 0.394 0.278
Multi-phase 1266 arcs, 302 transitions 17 In theory, all equals 1

Table 8.3: Performance comparison with process mining algorithms

i.e., they have lower average weighted distance, higher structural appropriate-
ness, and less number of splits / joins in the corresponding EPC model. Except
multi-phase miner [200], none of the algorithms discovered a process model with
behavior fitness being 1. Note that multi-phase miner was designed in a way that
it always discovers a process model with fitness 1. Despite the fact that the mod-
els discovered by multi-phase miner are extremely complex, they also allow for
more behavior not covered by the variants [200, 168]; i.e., results are often under-
fitting.7 Consequently, we consider the costs of multi-phase miner for reaching
behavior fitness 1 as being too high (extremely complex structure and overfit-
ting). When excluding multi-phase miner, evaluation results show that even if
we apply traditional process mining algorithms for discovering a process model
that covers behavior of the variants best, the resulting model might NOT be able
to support all kinds of behavior as captured by the variants. This indicates the
necessity for process configuration: i.e., it is not sufficient to maintain only one
model which covers all behavior; instead we must enable process configurations at
both run-time and build-time to obtain different process variants which support
specific behaviors in different scenarios.

For the given dataset, the behavior measurements of the process model we
discovered by our heuristic algorithm are also very good. Note that our heuristic
algorithm discovers the same model (cf. R4 in Fig. 7.9) based on either T , or

7In principle, it is possible to measure underfitting using parameter like behavioral appro-
priateness [168]. However, due to the complexity of the discovered models, the conformance
checker in ProM cannot measure some of discovered models in a reasonable time.

133

CHAPTER 8. ALGORITHM COMPARISON

T0.2 or T0.6. This model has highest behavior fitness for trace sets T and T0.2,
and only a few percent less than the genetic algorithm for T0.6. This evaluation
results imply that the behavior aspect of the discovered model has not been
sacrificed that much. However, this was rather unexpected because our heuristic
variant mining algorithm is focusing on structure rather than on behavior. As
example consider the examples we presented in Section 3.3, which compare the
goal of process mining algorithms and the goal of our research (cf. Fig. 3.4).
If we evaluate these examples based on the evaluation criteria in Section 8.4.1,
process mining algorithms will have better scores in all behavior measurements.
Consequently, we cannot generalize the evaluation results based on this single
case. Instead, we consider the results as an interesting trigger for additional
analyses on the behavior aspects of our mining algorithms.

Note that the scope of process mining is also broader. In this thesis we have
assumed that process models are block-structured, activities have unique labels,
and each process model can be built based on a limited set of process patterns.
Process mining algorithms, on the contrary, can work without these constraints
and consequently can be applied to more complex scenarios as well. Based on
the analyses presented in this section, we consider our approach as an important
complement of process mining algorithms. Instead of having one complex model
which tries to cover all behaviors, we may maintain only a reference model of
simpler structure, and allow process adaptations to obtain suited process variants
supporting the execution of process instances best.

8.5 Summary

In this chapter, we have qualitatively and quantitatively compared our clustering
and our heuristic algorithms for discovering a reference process model out of a
collection of process variants. The clustering algorithm does not presume knowl-
edge about the original reference process model based on which process variants
are configured. By only looking at the variant collection, it can quickly discover
a reference process model in polynomial time and provide additional information
on how well each part of the discovered reference model fits to the variants. Our
heuristic algorithm, in turn, can take the original reference model into account
such that the user can control to what degree the discovered model differs from
the original one. This way, we cannot only avoid spaghetti-like process mod-
els, but additionally control how much changes we want to perform. We further
compared our techniques with existing process mining algorithms. Results indi-
cate good performance of our algorithms in both structure and behavior aspect.
Though the evaluation results are based on one example and we cannot general-
ize our conclusions, we consider them as an interesting trigger for integrating our
approaches with process mining techniques.

134

9
Case Studies

In this section, we discuss how we applied our mining techniques to two real-world
cases from the automotive and the healthcare domain. In particular, these two
cases can be mapped to the two mining scenarios we have described in Chapter
1. To be more precise, the automotive case fits to Scenario 1, i.e., as input there
exists a collection of process variant models, but no original reference process
model is known. Opposed to this, the healthcare case can be mapped to Scenario
2, i.e., as in put there is a collection of process variant models as well as a
documented reference process model to which the variants related. The healthcare
and the automotive cases are described in Sections 9.1 and 9.2 respectively. We
present a cross-case analysis in Section 9.3 and conclude this chapter with a
summary in Section 9.4.

9.1 Hospital Case

9.1.1 Description

Context. We analyzed a variety of patient-centered processes in a large clin-
ical centre (with more than 1000 beds) in Germany. In this clinical centre the
diagnostic and therapeutic processes of a patient usually involve various, organi-
zationally more or less separate units. For a patient being treated in a department
of internal medicine or gynecology, for example, medical tests and procedures at
the laboratory and the radiology department become necessary. In this context,
medical procedures must be planned and prepared, and appointments be made.
Further, specimen or the patient herself have to be transported, physicians from
other units may need to come and see the patient, and medical reports have to be
written, sent, and evaluated. Thus, the cooperation between organizational units
as well as the medical personnel is a vital task, with repetitive but nevertheless
non-trivial character. In order to optimize these processes and to better align
them with the existing hospital information system, comprehensive reengineering
efforts were conducted at the clinical centre resulting in several hundred process
models. For capturing, analyzing and simulating these models two business pro-
cess modeling tools were used - the ARIS toolset and the Bonpart tool (see Fig.

135

CHAPTER 9. CASE STUDIES

Figure 9.1: Two process models of a particular clinic as captured with the ARIS
toolset

9.1 for a screenshot of one of the processes being modeled with ARIS toolset).
Data Source. We analyzed several process model repositories that emerged

during the above mentioned process reengineering efforts. Particularly, we were
able to identify more than 90 process variants for handling medical orders and
medical procedures respectively (e.g., X-ray inspections, cardiological examina-
tions, lab tests). Despite their similarity the different variants were captured in
separate process models based on different notations (e.g., Event-driven Process
Chains and Activity Diagrams) and modeling components (e.g., ARIS Architect,
Bonapart). As example consider one variant of the medical order handling pro-
cedure as depicted in Fig. 9.2. The shown process variant was modeled with
the ARIS toolset and captured as Event-driven Process Chain. Interestingly, all
identified variant models were based on standard workflow patterns like Sequence,
AND-/XOR-Splits, AND-/XOR-Joins, and Loop, and their size ranged from 7 to
17 activities. Interestingly, for each variant it was possible to transform its model
into a behavior-equivalent, block-structured representation; i.e., it was possible to
map the different variant models to a representation following our process meta
model.1 However, before this transformation, we had to apply a number of sim-

1This also applies to 70 other process models from the healthcare domain which we analyzed
in another case study in close collaboration with a Women’s Clinic. The respective models cover

136

9.1. HOSPITAL CASE

ple refactorings (see [210] for respective techniques) to harmonize the identified
process variant models. In particular, we had to relabel certain activities in order
to obtain a consistent labelling style and to ensure that activities with the same
meaning also have the same label. Besides this we excluded 3 process variants due
to flaws in their corresponding model. Note that the notation we use in Fig. 9.3
is only for illustration purpose, but does not correspond to the original notation
of the respective models (i.e., EPCs). Furthermore, we translated the German
labels into English language to make the case better understandable for readers.

Sources of Variance. Though the variant models show structural similar-
ities they comprise parts only relevant for a sub-collection of the variants. For
example, some of the variants require confirmation of a medical order by a senior
physician, while this is not required for other variants. Similarly, there exist med-
ical procedures requiring complex scheduling activities, whereas in other cases no
scheduling is required or the patient simply needs to be registered at the site of
the care provider. Depending on the physical condition of the treated patient, in
addition, a transport needs to be organized or not. Similarly, in emergency cases
a short medical report is transmitted immediately after the medical examination
to the requesting unit (e.g., a ward). Other variations of the analyzed models
concern the preparation phases at the site of the wards and the examination units
respectively.

Original reference model: The top of Fig. 9.3 shows the original reference
process model Sref as we could find it in the organizational handbook of the clin-
ical centre. (Again not that the actual reference model was documented in terms
of an Event-Process-Chain whose elements were labelled in German language.)
Furthermore, this figure depicts four selected process variants as identified in our
case study. In total, we consider the most relevant 84 process variants which
make up more than 95% of the identified variants. Based on the number of cor-
responding process instances, we assign weights to the variant models ranging
from 0.1% to 8.67%. However, none of the process variants is dominant, or sig-
nificantly more relevant than others. Note that the original reference process
model Sref constitutes a very simple model since it only contains 7 activities or-
ganized in sequence. When discussing this reference model with process owners
we learned that its original purpose was to define the basic organizational steps
of an arbitrary medical order, and medical processes respectively but that the
different variant models have evolved over time and thus more or less differ from
this reference model.

We calculate average weighted distance between this original reference model
and the given collection of process variants and obtain 5.307 as result; the corre-
sponding fitness value is 0.585.

areas like birth and postnatal care, inpatient hemotherapy treatment, outpatient chemotherapy
treatment, ovarian carcinoma surgery, and keyhole surgery.

2Note that the labels of the depicted Event Process Chain are in German since the respective
project was conducted in a German clinical centre.

137

CHAPTER 9. CASE STUDIES

Figure 9.2: Example of one variant of the medical order handling process2

9.1.2 Results

We applied our heuristic algorithm for variant mining to this hospital case. We
did not set limitations regarding the number of search steps, i.e., the algorithm
continued as long as it was able to discover a better models. Table 9.1 shows ob-
tained mining results and measures in respect to the original reference model, the
intermediate process models, and the finally discovered reference process model.
Comparable to the analysis of our illustrating example from Table 7.2, we calcu-
late fitness value and average weighted distance for every discovered model. We

138

9.1. HOSPITAL CASE

AND
-split
AND
-join

XOR
-split

XOR
-join

Control
Flow

Loop

Select examination Order examination
Prepare patient

Inform patient about procedure
Perform examination Create medical report Read/validation medical report

S
Process configurationAftercare for patientCreate medical report

Create “quick report” Read “quick report”

Perform examination

Read/validation medical report

Select examination Order examination schedule examination
Prepare patient

Inform patient about procedure
Call in patient

Transport patient to exam unit

Transport patient back from exam unit

S
002111

Aftercare for patientCreate medical report
Create “quick report” Read “quick report”

Perform examination

Read/validation medical report

Select examination Order examination register examination
Prepare patient

Inform patient about procedure

Call in patientS
202011 Second opinion by other physician Order examination

Call in patient

Select examination

Prepare patient (ward)Inform patient about procedure

Prepare patient (exam unit)
Aftercare for patient Create medical report Read/validation medical report

Perform examination

S
110001

Perform examination Order examination
Call in patient

Select examination
Prepare patient (ward)Inform patient about procedure

Prepare patient (exam unit)

Aftercare for patient Create medical report Read/validation medical report
Create “quick report” Read “quick report”

S
100020

80 more process variants

Call in patient

Select examination Order examination Schedule examination Prepare patient (ward)Inform patient about procedure
Perform examination Aftercare for patient Create medical report Read/validation medical report

Process variant mining

Original reference model

S’ Discovered reference model

Figure 9.3: Selected process variants from the healthcare case

139

CHAPTER 9. CASE STUDIES

S R1 R2 R3 R4

Model name
Original 1st 2nd 3rd Final
reference intermediate intermediate intermediate reference
model model model model model

Fitness 0.585 0.673 0.759 0.773 0.778
Average weighted distance 5.307 4.307 3.401 2.981 2.795

Change type Insertion Insertion Insertion Move
Delta-fitness 0.087 0.086 0.014 0.005

Delta-Distance 1 0.905 0.421 0.186

Table 9.1: Mining results of the hospital case study

further document delta-fitness and delta-distance (cf. Chapter 7) value for every
change operation. Results can be summarized as follows:

1. Time. The time to perform the mining is neglectable, it takes only 0.782
second to discover the three intermediate models R1, R2, R3, and the final
result R4.

2. Improvement of average weighted distance. If we do not set any limitation on
the number of search steps, we are able to reduce average weighted distance
of the reference process model from 5.307 to 2.795, which corresponds to
47.3% less than average weighted distance between original reference model
and variants. This result again indicates that we are able to significantly
reduce future configuration efforts when applying our algorithm.

3. Precision. Precision of the results is 100% for this case. We are able to
discover a better process model with lower average weighted distance to all
4 change operations.

4. Importance of top changes. Delta-distance and delta-fitness are monotoni-
cally decreasing in this case, indicating that a change operation performed
before another one is always more important than this other one. In this
case, the top 50% change operations account for 75.83% of the overall dis-
tance reduction.

It is not difficult to conclude that our algorithm performs well for this hospital
case. We are able to discover a better process model in a very short time, and
the models we discover also satisfy the features of our algorithms, i.e., our mining
algorithm discovers more important operations at the beginning of the search,
while it considers the less important one at th end.

We have shown the newly discovered reference model (as depicted at the bot-
tom of Fig. 9.3), to process owners at the clinical centre who confirmed that this
new reference process model is closer to the variants than the old reference model.
We additionally considered other process models which were related and did show
some variance; e.g., we analyzed process variants representing different kinds of
chemotherapeutic treatments. However, since we were only able to identify three
different variant models of this process, we omit further details here.

The clinical centre was particularly interested in the harmonized variant mod-
els of the medical order handling procedure and the optimized reference process

140

9.2. AUTOMOTIVE CASE

model we derived for it. Respective artifacts were needed for discussing required
customizations of the hospital information system in-use.

9.2 Automotive Case

9.2.1 Description

Context. We conducted a case study in a large automotive company in which
we analyzed variants of its product change management process. Basically, this
process comprises several phases like specification of a change request, handling
of this change request, change implementation, and roll-out. In the following
we only consider the top-level process and comment on sub-processes later on.
Usually, the change management process starts with the initiation of a Change
Request (CR), which must then be detailed and assessed by different teams (e.g.,
from engineering and production planning). The gathered comments have to be
aggregated and approved by the CR board. In case of positive approval change
implementation may start (e.g., detailing the planning and triggering the re-
engineering of parts affected by the change).

Data Source. We identified 14 process variants dealing with (product)
change management. These variants were captured in separate process models
being expressed in terms of UML Activity Diagrams and using standard process
patterns like Sequence, AND-/XOR-Splits, AND-/XOR-Joins, and Loop. Size of
the variants ranged from 5 to 12 activities and their weights from 2 to 15 accord-
ing to the relative frequency of corresponding process instances. However, none of
the process variants was dominant or significantly more relevant than the others.
All variant models were already block-structured or could be easily transformed
into a behavior-equivalent block-structured process model. Note that the models
depicted in Fig. 9.4 resulted from a transformation to the specific graphical no-
tion as used in the context of this thesis. The actual variant models have been
expressed in terms of UML Activity Diagrams.

Sources of Variance. Though the variant models show structural simi-
larities they comprise parts which are only relevant for a sub-collection of the
variants. For critical changes, for example, the Quality Assurance Department
needs to be involved in the appraisal and commenting of the change request,
while this is not required for normal changes. Concerning low-cost changes, in
turn, change implementation may start before the change request is finally ap-
proved. In this case, the implementation procedure will have to be aborted and
compensated if the the approval is withhold. Other points of variations concern
the preparation of the approval task, the communication of implemented changes,
and the triggering of secondary changes (raised by the requested one). The left
hand side of Fig. 9.4 shows 4 sample variant models from our case.

141

CHAPTER 9. CASE STUDIES Change request
Development commentsPilot commentsProduction planning comments Integrate Comments

 Request for Comments
Approve

Completion
Implementation

Change request
Development commentsPilot commentsProduction planning comments Integrate Comments

 Request for Comments
Completion

Undo implementation
Quality Department commentsImplementation Prepare decision paper Approve

Exemplary process variants
Discovered reference

process model

XOR-SplitXOR-Join Control FlowLoop
AND-SplitAND-Join

Change request
Development commentsPilot commentsProduction planning comments Integrate Comments

 Request for Comments
Approve

 Check for other changes
Implementation

Completion

Change requestCompletion implementation
Approve

Development comments Pilot comments Production planning comments Quality Department comments
Integrate Comments Request for Comments

S1
Weight: w1 = 15 (most frequent variant)

S8
Weight: w8 = 10

S14
Weight: w14 = 2

S13
Weight: wm = 5

Change request Request for fast implementation ImplementationCompletion Inform steering board

S’

Figure 9.4: Selected process variants from the change management case

142

9.2. AUTOMOTIVE CASE

9.2.2 Results

Since we did not know the original reference process model, this case can be
mapped to Scenario 1. Therefore, we applied our clustering algorithm to ”merge”
the process variants. This way we obtained S′ (cf. Fig. 9.4) as reference process
model. As average weighted distance between S′ and the variants we obtained
2.06. The time to find the model was negligible (0.031 seconds).

We discussed the discovered reference model with process engineers from the
automotive company. They confirmed that it constitutes a good choice for rep-
resenting the top level change management process.

Based on the discovered reference process model (or base model for configu-
ration), we can apply advanced change management techniques to configure this
reference process model into the different process variants in an effective and
manageable way. In the automotive company, in which we conducted the case
study, the Provop research project was launched in which advanced concepts for
the management and configuration of process variants have been developed [68].
In Provop a particular process variant can be configured by domain experts by
adjusting a given reference process model through applying a set of high-level
and predefined changes.

In particular, the mining algorithms we developed in this thesis can signif-
icantly speed up the design of such a reference process model; more precisely
respective reference models can be automatically discovered for any collection
of block-structured process variant models. When further applying our mining
algorithms to sub-processes relating to the different phases of the change man-
agement process (e.g., change implementation) and their variants we obtained
good results as well.

The discussed case constitutes one of many process scenarios we encountered
and analyzed in the automotive domain. Interestingly, for almost all of them we
were able to identify large collections of similar process variants, each of them
being valid in a particular application context. Regarding the presented case the
process owners liked the discovered reference process model and considered it as
very intuitive. Based on this result, they asked us to apply our mining approach to
the more specific phases of the change management process as well, which resulted
in well-accepted reference models for its sub-processes as well. We also studied
other sources of data. Regarding release management for electric/ electronic
components in a car, for example, we identified more than 20 process variants
depending on the product series, involved suppliers, or considered development
phases.

Another complex scenario we considered was the product creation process, for
which dozens of variants exist. Thereby, each variant is assigned to a particular
product type (e.g., car, truck, or bus) with different organizational responsibilities
and strategic goals, or varying in some other aspects. Regarding the latter case,
however, we encountered additional problems concerning the inconsistent labeling
of activities, the use of different process granularities, and the heterogeneity of
the used modeling formalisms. This also shows that our algorithms need to be

143

CHAPTER 9. CASE STUDIES

integrated in a larger process repository framework, which additionally provides
support for model configuration, model refactoring, and model management [210,
68].

9.3 Cross-Case Analysis

Our case studies fit to the two scenarios we described in Chapter 1. Therefore we
can apply the results from Section 8.3.1 to qualitatively compare the two cases
(cf. Table 8.1). For example, the two cases have different input data. While
our automotive case does not comprise a reference process model, our healthcare
case does. The cases also have different result formats: we discovered a reference
process model in our automotive case, while identifying a sequence of change
operations in the context of the healthcare case. Finally, in the context of the
two cases, we applied different evaluation criteria (separation and cohesion in the
context of the automotive case, and the described fitness function in connection
with the healthcare case).

As discussed in Chapter 8, our clustering and heuristics algorithms do not
exclude each other. In principle, we can apply the heuristic algorithm to the au-
tomotive case (no reference model) and the clustering algorithm to the healthcare
case as well. By doing this, we can quantitatively compare our cases.

Since there was no original reference process model in the automotive case,
we used the most frequent variant (cf. S1 in Fig. 9.4) as starting point of our
search. We did not set any search limitation in this context such that our heuristic
algorithm could discover the best model. As result we obtained process model S′

(cf. Fig. 9.4) as best reference process model after performing one change on S1,
which is the same model as we discovered using the clustering algorithm. Though
the heuristic algorithm ran longer than the clustering one to find the reference
process model, overall search time was only 1.062 seconds.

For the healthcare case, we can apply our clustering algorithm purely based
on the collection of variants. By setting the threshold to 50%, we obtain a
process model S′′ which is similar to S′ from Fig. 9.3. S′′ contains one additional
activity prepare patient (exam unit) as successor of call in patient and
predecessor of perform examination. Though different, S′′ has the same average
weighted distance to the variants as S′ has, and only takes 0.031 seconds to
discover the result. However, since we did not consider the original reference
process model S, it is not possible to observe how the reference process model
evolve as our heuristic algorithm can do (cf. Table 9.1).

9.4 Summary

This chapter described two applications of our algorithms to real-world cases
from two different domains. The automotive case solely comprises a collection
of process variants. Therefore, we applied the clustering algorithm to discover a

144

9.4. SUMMARY

reference model which can be easily configured into these process variants. We
discussed the discovered reference model with process engineers from the automo-
tive company and they confirmed that it constitutes a good choice for representing
the top level change management process. Furthermore, an additional research
project was launched by the respective automotive vendor in which a component
for the management and configuration of respective process variants was imple-
mented. In particular, the techniques provided by this thesis are complementary
to this component and enable the design of optimized process reference mod-
els. Regarding the healthcare case, we were confronted with both a collection of
process variants and a reference process model out of which these variants were
configured. We then applied our heuristic algorithm to improve the existing refer-
ence process model. We presented the newly discovered reference process model
to process owners at the clinical centre who confirmed that it is closer to the
variants than the old reference model. The identified reference model was further
used as artifact in discussions with the vendor of the respective hospital infor-
mation system in order to facilitate required customizations and configuration
options.

Altogether, from these two and other cases we considered, we believe that the
practical relevance of our algorithms will be high.

145

Part IV

Conclusion

147

10
Related Work

Though clustering and heuristic search algorithms have been widely used in areas
like data mining [181], artificial intelligence [110] and machine learning [138],
respective techniques have not been applied in the context of process variant
mining so far; i.e., there exist no advanced approaches for learning from the
adaptations that were applied when configuring process variants out of a given
reference process model.

In this chapter, we discuss the body of knowledge with respect to process
variant management and process variant mining (cf. Fig. 10.1). As the most
relevant research field for our work, we first extend our discussions on process
analysis and process mining algorithms in Section 10.1. Section 10.2 then presents
related work on traditional data analysis and data mining techniques. As an
emerging new field, Section 10.3 introduces approaches on web service support.
Following this, we look at general evaluation methods for algorithms in Section
10.4. Finally, Section 10.5 concludes with a summary.

10.1 Process Analysis and Process Mining Approaches

In this section, we discuss related work from the process management area. Par-
ticularly, we focus on related approaches on process change (cf. Section 10.1.1),
process similarity (cf. Section 10.1.2), process mining (cf. Section 10.1.3), confor-
mance checking (cf. Section 10.1.4), process change mining (cf. Section 10.1.5),
and reference modeling (cf. Section 10.1.6).

10.1.1 Process Changes and Process Variant Management

The ability to effectively deal with process changes has been identified as one
of the most fundamental success factors in process-aware information systems
(PAISs) [124, 133, 149, 211, 213]. Considerable efforts have been made to make
PAISs more flexible [217, 66, 141, 165, 50, 189, 133]. For example, late binding
[1] and late modeling [109] techniques defer modeling decisions to run-time by
enabling users to select process fragments and to specify the control dependencies
between them on-the-fly. Declarative approaches [189, 133, 214] further enhance

149

CHAPTER 10. RELATED WORK

Algorithm Evaluation ApproachesIVForecast future behavior Identify influential parameters Hypothesis test Correlation analysis Complexity theory Empirical findings / manual judgementSimulations1) Algorithm evaluation criteria 2)

Graph based analysisData Analysis and Data Mining ApproachesII

Service Composition / Monitoring ApproachesIII Composition diagnosis Dynamic service composition Service alignmentService Level Agreement (SLA)Service Coordination Adaptive Services

2)Delta/snapshot algorithmsEdit distance Tree edit distance Graph isomorphism Frequent sub-graph miningGraph pattern discovery Association rules mining
 Agglomerative hierarchical clustering

Genetic algorithmsGraph-based clustering Simulated annealingChange primitives
Dengrogram and related evaluations

Evolutionary algorithmsDistance measurement1) Clustering / Heuristic algorithms3)

Service Composition1) Service Monitoring2)
Reachability analysis Graph partitioning

Process Analysis and Process Mining ApproachesI ADEPT framework Petri nets Inheritance ruleProcess variant management Process change patterns
Trace equivalence Bi-similarityExecution log based similarity Structure based similarity Alpha algorithm Heuristic miningGenetic miningDSM algorithmMulti-phase miner

Behavior perspective Log perspectiveStructure perspective Configurable workflow model
Mining based on change logs ProCycleCase based reasoning

Tree equivalence Trace clustering / segmentation
Process Similarity2) Process Mining3)

Conformance check4) Process Change Mining5)

Process changes/process variants1)
Change propagations Dynamic lifecycle support Activity matching Theory of regionsMining block-structured modelExpectation-maximization Data / business rule perspective Activity ranking Reference Modeling6) Provop approach

Figure 10.1: Overview of related work

150

10.1. PROCESS ANALYSIS AND PROCESS MINING APPROACHES

flexibility by only providing a set of rules and constraints, so that users can
compose a process model flexibly. Based on inductive logic programming, [50]
allows for flexible process execution and planning on condition that certain rules
expressed in terms of predicate logic are satisfied.

Furthermore, structural process changes at runtime and approaches for flex-
ible process configuration have been intensively discussed in the literature [154,
155, 211] (cf. Section 2.2 for a detailed introduction). In this context, change
patterns and process flexibility frameworks have been introduced to describe com-
mon change features and flexibility approaches in the field of process management
[215, 211, 189, 133, 50]. A comprehensive analysis of theoretical and practical
issues related to (dynamic) process changes, for example, has been provided in
the context of the ADEPT2 change framework [141, 148] (cf. Section 2.3 for
details). Based on its conceptual framework, the AristaFlow BPM Suite has
emerged [148, 145, 37]. AristaFlow BPM Suite is an industrial-strength version
of the ADEPT2 process management system and has been already successfully
applied in various application domains [94].

There exist approaches for dynamic structural changes of Petri nets as well.
In this context, inheritance rules were introduced which allow modifying a Petri
Net, while maintaining its soundness [187]. Based on the suggested theory, tools
like C-YAWL and C-EPC [162, 54] for configurable process models [55] have
emerged which allow configuring process models at both runtime and buildtime.
For example, users may activate, block or hide certain activities or process frag-
ments of the given reference process model. However, when configuring a process
model, certain requirements need to be fulfilled in order to ensure that the result-
ing process model meets correctness constraints [184, 183]. A similar approach is
provided by Provop [66, 68], which allows for the configuration of process variants
by applying well-defined change patterns (e.g., insert, delete, and move process
fragments) to a given reference process model. Thereby, Provop assists design-
ers in the context-based application of respective changes when configuring a
a process reference model to a particular context [65], Provop further ensures
correctness of the configurable process variants in this context [67].

Change propagation deals with the problem that changing one process model
may influence dependable ones; i.e., a change applied to one process model needs
to be propagated to relating process instances and their models [156, 220, 229]. In
this context, approaches like ADEPT2, WIDE and WASA2 [147, 27, 156, 223] pro-
vide solutions to propagate process schema changes to related process instances
while further guaranteeing the correct executability of these process instances.
[229, 159] allow change propagations between process models of different abstrac-
tion levels based on their behavioral profiles. It discusses the influence of a process
change on related partner processes, and provides an approach to propagate such
change to partner process models based on process choreography analysis.

Furthermore, many efforts have been undertaken to enable PAISs to provide
full process lifecycle support. In this context approaches like ProCycle [213, 158],
CAKE2 [119], WASA2 [224, 207], TRAMs [87], Worklets/Exlets [1, 2], and YAWL
[192] have emerged (for an overview see [154, 211]). They are all trying to provide

151

CHAPTER 10. RELATED WORK

users with the flexibility to dynamically adapt the processes running in the PAIS
to real-world situations at both process type level and process instance level.

Finally, there exist approaches which provide support for the management and
retrieval of separately modeled process variants. As example, [107, 108] allows
for storing, managing and querying large collections of process variants within a
process repository. Graph-based search techniques are used in order to retrieve
variants that are similar to a user-defined process fragment. Obviously, this
approach requires profound knowledge about the structure of stored processes, an
assumption which does usually not hold in practice. However, no techniques for
analyzing the different variants and for learning from their specific customizations
are provided.

10.1.2 Process Similarity

Various papers have studied the process similarity problem [188, 187, 231, 12, 73].
Trace equivalence is commonly applied in this context to decide whether two
process models are similar or identical [73]. More precisely, two process models
are considered being the same if they can generate the same trace set (cf. Def.
4 in Section 2.1). Bisimulation [187, 203] refines the notion of trace equivalence
by considering stronger notions from structural aspects, e.g., the branching time
of different models. Usually respective similarity measurements result in binary
”Yes” or ”No” answers. Consequently, their usefulness is limited in our context.

Using traces, [188] measures the similarity between two process models based
on the observed behavior as captured in execution logs. This way, the similarity
also reflects the relative importance of each single trace from the execution log.
The approach presented in [231], in turn, uses edit distance to measure the differ-
ence between the trace sets of two process models. More precisely, the distance
between process models is measured in terms of the sum of all edit distances
between traces from the two trace sets. Other similarity measures use precision
and recall to evaluate the differences between two process models [188, 134]. Fi-
nally, [202] provides an interesting approach to measure the similarity between
two process models by using causal footprints, which describe a collection of the
essential behavioral constraints imposed by a process model. This approach takes
both behavior and semantics into account, and provides a similarity score close
to manual judgments.

There are few techniques measuring similarity between process models based
on their structure. Regarding Petri Nets and state automata, similarity between
process models can be measured based on behavioral inheritance rules [211, 191,
187]. For example, [191] introduces the notion of greatest common divisor (GCD)
and least common multiple (LCM) of two Petri Nets. In this context, the GCD
of two Petri Nets refers to a Petri Net which captures the maximal commonality
between them; the LCM of two Petri Nets, in turn, is a Petri Net which captures
each conceivable behavior of the two Petri Nets with simplest structure. Finally,
[46] presents an approach for measuring similarity between BPEL process models
taking into account their common structure. Such technique is similar to our

152

10.1. PROCESS ANALYSIS AND PROCESS MINING APPROACHES

distance measurement (cf. Chapter 5) but can only provide a binary answer to
whether two models are the same or whether one model is a sub-model of the
other. We refer to [219] for an overview of approaches measuring behavioral and
structural similarities between process models.

Similarity measurements have been also applied for matching activities in
process models [44, 43, 24]. In this context, the goal is to map the activities
from one process model to the activities of another one, while taking semantics,
structure and control flow aspects into account. Similarity results are considered
being helpful when merging two process models or when retrieving them from a
process repository [43].

None of these approaches measures similarity in terms of a unique number,
based on the effort needed for transforming one process model into the other as
presented in this thesis.

10.1.3 Process Mining

Process mining has been extensively studied in literature. Its key idea is to dis-
cover a process model by analyzing the execution behavior of (completed) process
instances as typically captured in execution logs [195] (cf. Section 2.5 for a de-
tailed introduction of process mining techniques). In the context of process min-
ing, a variety of techniques has been suggested with different properties and goals
[195, 221, 39, 197], and advanced tools like ProM [201, 64] have been developed
supporting a large spectrum of process mining and process analysis algorithms.
For example, the Alpha algorithm [197, 222] can quickly discover a process model
expressed in terms of a Petri Net [126]. However, this simple algorithm is only
of theoretical interest since it cannot handle short loops or noise. It can also
not differentiate between important traces and trivial ones. The heuristic mining
algorithm [221] extends the Alpha algorithm by additionally being able to cope
with noise in the logs. In this context, noise often refers to exceptional behavior
or erroneous data contained in the execution log. The genetic mining algorithm
[39] additionally extends process mining techniques by also considering complex
constructs like non-free choice, non-unique labels and short loops. When apply-
ing the genetic mining algorithm, the discovered process model will be closer to
the behavior as observed from the execution log. However, this algorithm is also
more complex than the Alpha or the heuristic mining algorithm.

Besides the aforementioned algorithms, which discover a Petri Net from an
execution log, several other process mining algorithms exist which discover a
process model being expressed in terms of other formalisms. For example, [33]
introduces three algorithms representing different levels of accuracy and enabling
different degrees of robustness at the presence of noise. Regarding these algo-
rithms, traces are first converted into an event graph based on Markov chains
[10, 72] and are then transformed into a finite state machine which represents
the discovered model. Multi-phase Miner [200] discovers an EPC model by it-
eratively including each trace in the discovered process model. The approach
presented in [172], in turn, focuses on the discovery of a block-structured process

153

CHAPTER 10. RELATED WORK

model. This algorithm iteratively refines the internal structure of a bigger block
into several smaller ones. This iterative approach continues until all blocks are
identified. Using the Expectation-Maximization algorithm, [48] tries to discover
a process model from unlabeled execution logs, i.e., without having information
about which activities belong to which process instances.

In order to achieve better results in process mining, trace clustering techniques
have been suggested [19, 57, 177]. Instead of considering the whole trace set for
process mining, traces are first clustered into several smaller sets, and then a
collection of process models is discovered for each of these small trace sets using
standard process mining techniques like the aforementioned heuristic and genetic
algorithms [39, 221]. Consequently, instead of one several process models are
discovered simultaneously. Each of them fits better to the corresponding sub-
set of traces when compared to the process model that can be discovered when
considering all traces. However, the discovered collection of models still needs to
be managed separately. So far, it has been not possible to merge them into a
generic model from which they can be easily configured.

Another direction of trace clustering aims at clustering activities within traces
for better visualization purpose [63, 206, 15]. For example, [63] clusters several
activities into a segment and then discovers process models only based on these
process segments. This way spaghetti-like structures are avoided for the discov-
ered model. Similarly, the approaches presented in [206, 49] apply techniques
based on Markov chains [72, 10] in order to divide a long trace into a number
of small clusters. Based on these trace clusters, several process fragments, which
describe different parts of a process model, can be discovered independently.

Based on the theory of regions [35], we can create a process model by adding
all process variants to different branches of an XOR-split. Then we can simplify
this process model and consequently obtain a model which captures all behav-
iors the process variants can show. Such state-based mining techniques inspired
Multi-phase Miner [200] or Region-based Mining [199] in the field of process min-
ing. For example, Multi-phase Miner follows an iterative approach, and in every
iteration it improves the discovered process model by including one more trace
in the model. Consequently a key property of Multi-phase Minder is that it can
always discover a process model with a fitness value of 1, i.e., all observed be-
haviors in the trace set are covered in the discovered process model. However,
the process models discovered from these approaches often result in over-fitting
process models with a spaghetti-like structure (cf. Chapter 8 for detailed expla-
nation). Usually, state-based algorithms also have difficulties to cope with noise
or to deal with infrequent process variants.

As we have already systematically discussed in Chapters 3 and 8, traditional
process mining differs from process variant mining due to its different goals and
input data [99]. The goal for mining process variants is to discover a reference
process model based on which the variants can be configured with less efforts.
Opposed to this, the goal of process mining is to discover a process model which
covers the observed behavior as it is captured in execution logs best. In principle,
we can apply traditional process mining algorithms to the problem addressed

154

10.1. PROCESS ANALYSIS AND PROCESS MINING APPROACHES

by this thesis as well. However when conducting a quantitative comparison, we
learned that the clustering and the heuristic algorithms presented in this thesis
can discover a process model with better structure, but without sacrificing the
behavior aspects too much (cf. Chapter 8 for details). [79] presents a method
to mine configurable process models based on event logs, but is still focusing on
the discovery of process models from event logs rather than on the reduction of
efforts for structural process configurations.

10.1.4 Conformance & Compliance Checking

Conformance checking techniques have been widely used to measure the matching
between designed process model and its actual executions [168]. Such analyses
often can be interpreted from both log perspective and process model perspective.
From the process model perspective, conformance checking measures to what de-
gree process executions deviate from the originally designed process model; by
contrast the log perspective reflects to what degree the real behavior is covered
by the original process model [168]. Such idea has also influenced process mining
approaches like genetic mining [39] and trace clustering [19]. Similarly, confor-
mance checking can be applied in the context of process monitoring where people
focus on monitoring how business process executions deviate from the original
process model [58, 237].

In addition, conformance checking can be used to evaluate a process model
from other perspectives as well. For example, behavioral appropriateness mea-
sures to what degree extra behavior, which is not captured in the log, is included
by a process model [168]. If a process model contains too much extra behavior,
it is considered as ”over-fitting”. Finally, conformance checking can also be used
to evaluate the complexity of a process model [168].

Similarly, compliance checking techniques measure to what degree data-flow or
business rules are satisfied by a process model [5]. Respective techniques are often
applied when designing a new process model or when auditing past executions
of existing business process models [52]. However, conformance or compliance
checking techniques are often focusing on the execution, the data flow or related
business rules of a process model, but not on structural adaptations as addressed
in this thesis.

10.1.5 Process Change Mining

There exist few techniques for mining process model variants. For example, the
ProCycle system enables change reuse at the process instance level to effectively
deal with recurrent problem situations [158, 213]. ProCycle applies case-based
reasoning techniques to allow for the semantic annotation as well as for the re-
trieval of process changes. Based on this, respective process adaptations can be
re-applied in similar problem context to configure other process instances later
on. If the reuse of a particular change exceeds a certain threshold, it becomes
a candidate for adapting the process schema at the type level; i.e., for evolving

155

CHAPTER 10. RELATED WORK

this schema accordingly and thus for considering the change for future process
instances as well. Though the basic goal of ProCycle is similar to our approach,
the techniques applied are much more simpler and do not consider variation in
changes. Instead, the focus of ProCycle is more on the reuse of ad-hoc changes
based on semantic annotations. A similar learning approach, which also relies on
case-based reasoning techniques, is provided by CAKE2 [119, 216].

To mine high level change operations, [61, 62] present an approach based on
process mining techniques. The input consists of a change log, which explicitly
documents all process changes. Process mining algorithms are then applied to
discover the execution sequences of the changes (i.e., the change process). How-
ever, a prerequisite of this approach is the presence of a valid change log which is
not always available in practice. In addition, this approach simply considers each
change as individual operation such that its result is more like a visualization of
changes rather than their mining. By contrast, the clustering and heuristic al-
gorithms presented in this thesis can discover a reference process model without
requiring the presence of a change log.

The work presented in [104] introduces a technique to rank activities based
on their potential involvement in process configurations. Similar to our heuristic
algorithm, it can identify which activities are more often changed than others.
However, opposed to our heuristic algorithm it cannot provide suggestions on
how to change these activities in order to improve the reference process model
[105].

10.1.6 Reference Modeling

Regarding Configurable Workflow Models [55], all process variants are merged
into one core reference process model. This merging is based on inheritance rules
known from Petri Nets [187]. Though techniques like questionnaire-based con-
figuration can help in making the right configuration decisions at configuration
time [163], the resulting model turns out to be complex containing plenty of de-
cision points (see the case study reported in [56]). This approach becomes even
more difficult when being confronted with a large collection of process variants,
not being equally important. In this case, an extremely complex process model
might result which contains too many decision points and which cannot differen-
tiate between important variants and trivial ones. In fields like healthcare, such
complex models are often not preferred due to the large efforts needed to use
them [4, 96].

In this context, the aforementioned Provop approach (cf. Section 10.1.1) pro-
vides more flexibility in defining a reference process model and its configuration
options [68]. However, it still requires manual discovery of a reference model (or
a based model for process configurations). When encountering a large collection
of complex process variants, this may require considerable time and efforts to
discover a good reference model. The algorithms presented in this thesis can act
as a decision support tool for discovering a reference process model in the context
of Provop approach.

156

10.2. DATA ANALYSIS AND DATA MINING APPROACHES

10.2 Data Analysis and Data Mining Approaches

We first introduce and compare different distance measurements in Section 10.2.1.
Following this we discuss techniques for graph-based analyses in Section 10.2.2.
Section 10.2.3 then provides a general discussion of clustering and heuristic algo-
rithms.

10.2.1 Distance Measurement

In the database field, the delta-algorithm [93, 31] has been widely used to measure
the difference (i.e., delta) between two datasets. When updating a database, only
the delta is performed in order to minimize the number of transactions of this
update. Similar to the design goals of this thesis, the idea of minimizing the
number of changes is commonly applied in fields like data warehousing [93] and
distributed systems [31]. In addition, such techniques have been applied for
measuring process model difference. For example, the approach presented in [7]
measures the distance between two process models by determining their difference
in respect to their node and edge sets.

In the context of text processing, the edit distance (or Levenshtein distance)
is used to measure the minimal number of changes required to convert one string
into another [231, 208, 166]. Such distance measurement is commonly used for
string and text processing [9, 208]. It has been also applied for various analyses
of the traces a process model can produce, e.g., for measuring process distance
[231] and for trace clustering [177, 19].

Tree edit distance extends edit distance by analyzing tree structures instead
of strings [12]. Due to is ability to handle more complex structures, this tech-
nique is frequently applied in fields like computational biology [80] and compiler
optimization [180].

However, it would be not a good idea to directly apply the above mentioned
approaches in our research context. In particular, they do not take the struc-
tural aspects of process models into account. A process model contains richer
information than just nodes and edges (e.g., concerning split and join semantics),
and various properties (e.g., soundness) need to be guaranteed when changing it
[225, 211].

10.2.2 Graph-based Analysis and Mining Approaches

A process model is often represented as a graph structure based on which different
kinds of analyses are performed [7, 108, 188]. Informally, a graph consists of
a set of nodes, which can be connected using (directed) edges. Graph-based
data representation is used in many research fields like computer networks, social
networks and bioinformatics. Consequently, we can utilize some of the results
from graph theory in the context of mining and analyzing process models as well.

Graph isomorphism [181] and sub-graph isomorphism [181, 86, 235] are used to
measure the similarity between two graphs. In this context, two unlabeled graphs

157

CHAPTER 10. RELATED WORK

(or sub-graphs) are compared based on their structure, and they are considered
being isomorphic if a one-to-one mapping between their nodes exists. Despite
the high complexity of this problem, most algorithms can only provide a binary
answer, and are therefore difficult to apply to the basic problems discussed in
this thesis.

There are few techniques which allow to learn from process variants by mining
recorded change primitives (e.g., to add or delete control edges). For example,
the approach presented in [7] measures process model similarity based on the
adjacency matrices of the process models and suggests mining techniques using
this measure. Similar techniques for mining change primitives exist in the field
of association rule mining [181, 228], frequent sub-graph mining [78, 91], and
graph pattern discovery [235]; here common edges between different nodes are
discovered in order to construct a common sub-graph from a set of graphs. Such
techniques have been commonly applied in the field of bioinformatics for ”subdue”
discovery, where ”subdue” represents a certain sub-structure of genes or proteins,
which has a particular chemical or biological behavior [75]. Furthermore, social
network researchers use these techniques to find communities in which people
communicate internally and share common interests [121]. We refer to [29] for a
survey on graph mining topics and algorithms.

Besides mining, various analyses are enabled using graph representations. For
example, the shortest path algorithm [34] can be applied to find the shortest path
from one node to another; reachability analysis [166] can be applied to figure out
whether there are graph nodes that are isolated from other nodes. Based on
advanced techniques, we can identify key players in a network as well [18]. Key
players are the ones whose removal would disrupt or disconnect the network
maximally. In addition, we can evaluate the performance of networks, or analyze
a particular network phenomenon using simulations. For example, [25] simulates
virus propagation in order to stop the infection before it becomes an epidemic.

All these approaches are based on graph representations. However, they do
not consider important properties of process meta models. For example, they do
not consider soundness issues, do not differentiate between AND-Split and XOR-
Split nodes, and have difficulties to cope with silent activities (i.e., unlabeled
process activities without any associated action).

10.2.3 Clustering and Heuristic Algorithms in General

The clustering algorithm introduced in this thesis has been inspired by agglom-
erative hierarchical clustering and can be considered as a variant of it [181].
When compared to traditional agglomerative hierarchical clustering approaches,
our clustering algorithm differs in technical details, e.g.; in how to build a block
after finding a cluster and in how to reset the datasets afterwards (see Chapter
6 for details). Various kinds of graph analyses also employ clustering techniques;
e.g., for partitioning a graph or for finding its minimal spanning tree [82, 181].
These approaches have been applied in various domains as well; e.g., to speed up
text processing [42] or to optimize the resource allocation in a distributed system

158

10.3. WEB SERVICES

[111]. In addition, the evaluation measures we apply in the context of our cluster-
ing algorithm - precision and separation - were inspired by dengrogram analysis
for clustering algorithms [181]. In most clustering algorithms, precision evaluates
to what degree data samples are clustered into the right clusters, while separation
measures to what degree different clusters are separable from each other [181].
In the context of this thesis, we use similar computation approaches with minor
adaptations.

Heuristic algorithms or metaheuristic approaches have been applied in vari-
ous fields, including data mining [181], artificial intelligence [110] and machine
learning [138]. Normally, a heuristic algorithm optimizes a problem by iteratively
trying to improve a candidate solution (a search method) with regards to a given
measure of quality (fitness). A problem employs heuristics when ”it may have an
exact solution, but the computational cost of finding it may be prohibitive” [110].
Although heuristic algorithms do not aim at finding the ”real optimum”, they
are widely used in practice. Particularly, heuristic algorithms have been widely
applied in solving problems with NP complexity, like traveling salesman, inte-
ger linear programming, and resource-constrained project scheduling problems
[97, 106, 34]. The heuristic algorithm introduced in this thesis (cf. Chapter 7)
constitutes an evolutionary algorithm (or hill-climbing approach) [110]; i.e., we
try to iteratively find better solutions. As extension, genetic algorithms further
imitate biological evolutions by breeding generations of offsprings to find the off-
spring with the best gene [176]. Simulated annealing further extends evolutionary
algorithms by continuing search with less optimized solutions so that it can avoid
trapping into a local optimum [85]. In the context of our research, we decided
to apply a basic evolutionary algorithm instead of more advanced meta-heuristic
approaches. The reason for this choice is that our goal is to lay the ground for
mining process model variants instead of improving their performance.

10.3 Web Services

Web services can be considered as ”self-contained, self-describing, modular ap-
plications that can be published, located, and invoked across the Web” [139].
In this context, an increasing number of companies and organizations focus on
implementing their core business and outsource other application services over
the Internet; i.e., they utilize web services as offered by global providers. This
trend has attracted both academic and industrial researchers to look at different
aspects of services including their composition, orchestration and monitoring. In
this section, we focus on techniques for service composition and service monitor-
ing.

10.3.1 Service Composition

Service composition is one of the most popular research topics in the field of web
services and service-oriented computing [130, 139, 28, 118]. Service composition

159

CHAPTER 10. RELATED WORK

refers to the combined use of existing (web) services in order to serve the business
needs of a company best [139]. It often employs process management technology
(e.g., process engines based on WS-BPEL (Business Process Execution Language)
[21]) to orchestrate a collection of services in a process-oriented way in order to
realize a particular business goal.

A a service composition is often transformed into a formal representation (e.g.,
a Petri Net [74, 126] or state automaton [230]) in order to apply different kinds of
analyses. For example, based on such transformation we can validate, diagnose
and evaluate the performance of a service composition schema (e.g., response
time and failure rate) by using various kind of process analyses [194]. Respective
techniques focus on the structural and behavioral aspects of a service compo-
sition schema. Furthermore several other aspects have been discussed in order
to guarantee well functioning service composition schemes. For example, [175]
discusses semantic aspects of service compositions and suggests a richer descrip-
tion of services and a more effective way for allocating resources. The approach
described in [26], in turn, deals with quality aspects of service compositions; i.e.,
it addresses the question how a service composition schema can satisfy certain
quality properties like low response time and costs.

Service choreographies further extend the scope of service orchestrations by
additionally considering the interactions between multiple service compositions
[225]. In this context, the Choreography Description Language (CDL) [232] was
introduced for specifying service choreographies. Like composition schemes, a
service choreography specification is often transformed into a formal represen-
tation in order to enable its formal verification as well as to apply performance
analyses [51].

Recently, advanced techniques for dynamic service composition were intro-
duced which allow to dynamically adapt service compositions to changes in their
environment and to the needs of different customers in a simple and effective
way [28, 146, 53]. Respective adaptations are similar to the ones known from
adaptive process management, which has been intensively studied during the last
years [133, 68, 211, 213].

When allowing for the dynamic definition and adaptation of service compo-
sition schemes, we potentially obtain a large collection of service composition
schema variants derived from the same original schema, but slightly differing in
their structure. Consequently, mining the schemes of these service variants be-
comes an interesting topic [28, 139]. For this purpose, the different techniques
described in this thesis can be directly applied. Furthermore, flexibility issues
with respect to service choreographies have become a subject of increasing inter-
est during the last years. For example, the approaches described in [229, 159]
allow to align choreography schema changes with BPEL schema changes.

Since many approaches on service composition and service analysis are based
on process management techniques, we have provided a detailed discussion on
them in Section 10.1.

160

10.4. ALGORITHM EVALUATION APPROACHES

10.3.2 Service Monitoring

Service monitoring techniques are used to monitor the actual behavior of service
compositions and agreed upon service level agreements (SLAs) respectively [83].
Violations of these SLAs (e.g., delayed response time, lower quality of services)
can be identified and punished [16, 17]. Similar techniques have been applied in
business IT alignment [186], where undefined business rules or security protocols
[212] are automatically identified and measured. However, most approaches for
service monitoring analyze behavior inconsistencies (i.e., mismatch between the
designed composition schema and its real executions) [16, 17], or data / business
rule violations (i.e., deviations from pre-defined business rules or required service
qualities) [6, 5]. Clearly, they have different goals as the ones of this thesis in
which we focus on learning from structural control flow adaptations. As service
monitoring topics are similar to conformance checking [168] or compliance check-
ing [5] known from the field of process analysis, we have discussed further details
in Section 10.1.

10.4 Algorithm Evaluation Approaches

In this thesis, we have evaluated our algorithms based on simulations (cf. Chapter
6 and Chapter 7) and case studies (cf. Chapter 9). Section 10.4.1 discusses the
application of simulations in other research context. We further discuss general
algorithm evaluation criteria in Section 10.4.2.

10.4.1 Simulations

Simulation is often applied in system design, analysis and evaluation, and is one
of the most widely used techniques in operations research, management science
and computer visualizations [95]. In a simulation, ”we numerically excise the
model for the inputs and see how they affect the outputs” [95]. Simulations can
be used to explore and gain new insights into new algorithms or technologies,
and to estimate the performance of systems which are too complex for analytical
solutions [95].

In the context of this thesis, we use simulation to evaluate the performance
and basic properties of our algorithms and to predict their behavior when being
applied in practice and in a large scale. Such approach (i.e., using simulation to
test properties of the algorithms) is not only used frequently in computer science
[7, 41, 106], but also commonly applied in other fields as well. For example,
Traffic engineers use simulations for the planning, design and operation of trans-
portation systems (e.g., to plan or redesign parts of the street network from single
junctions over cities to a national highway network [136]). In ecology, biologists
use simulations to predict future fish populations in order to design proper fishing
policies [167]. Simulation techniques are also applied by economists to evaluate
the influences of certain economic regulations or policies [170].

161

CHAPTER 10. RELATED WORK

10.4.2 Algorithm Evaluation Criteria

Besides simulation, various techniques for evaluating the performance of heuristics
algorithms and clustering techniques exist. Complexity theory is often applied to
evaluate time and/or space complexity of an algorithm [34]. Complexity of an al-
gorithm is expressed in terms of polynomials to indicate how required time/space
grows as the number of analyzed data-points grows [34]. However, most algo-
rithms in our context have non-deterministic polynomial (i.e., NP) complexity.
Therefore, additional analyses of the performance of our algorithms are required.

The distance-fitness correlation, as used in this thesis, is commonly applied in
the evaluation of other heuristic or genetic algorithms as well [81]. For example,
[81] discusses more than 20 heuristic or genetic algorithms and uses the correlation
between their fitness value and the closest local optimum to evaluate the diffi-
culties of the problem filed and the performance of particular algorithms. [178]
further uses correlation between fitness values of parent and child generations to
evaluate the crossover function of a genetic algorithm.

It is also possible to evaluate an algorithm using qualitative measures. For
example, we can evaluate whether or not initial centroid points can influence
final clustering results, or whether a clustering algorithm is tolerant in respect to
noise and outliers [181]. In addition, empirical findings or manual judgment can
also play a role in algorithm evaluations. For example, in the filed of information
retrieval, ranking results of a particular searching algorithm are usually compared
to manually judged results. In this way they can evaluate the performance of a
particular search algorithm [14, 8].

10.5 Summary

In this chapter, we have discussed existing work in the context of managing,
analyzing, and mining process model variants. Particularly, we compared our
algorithms with a variety of approaches in fields like traditional data analyses
and data mining, process change, process similarity measurement, and process
mining.

Traditional data analysis and data mining algorithms commonly do not con-
sider important properties of a process meta model. Most process change and
process analysis techniques, in turn, can take important properties of a pro-
cess model into account, but do not support learning from past process changes.
Though process mining algorithms support learning from past process executions
and process changes, they have different inputs and goals than the algorithms
presented in this thesis.

In summary, only few of the discussed approaches are appropriate for support-
ing the evolution of a reference process model towards an easy and cost-effective
model by learning from process variants in a controlled way.

162

11
Summary

This thesis presented challenges, scenarios and algorithms for the representation,
comparison and mining of process variants.

We first described the major goal of process variant mining. By mining a
collection of process model variants, we want to discover a reference process
model out of which the process variants can be easily configured, i.e., a reference
process model with minimal average distance to the variants. We believe that
realizing this goal will contribute to strengthen process mining tools, and enable
learning from past process adaptations and process configurations, respectively.
Based on an analysis of existing process mining techniques, we motivated the need
for designing novel algorithms in order to achieve this goal, and we described the
challenges to be tackled in this context.

We provided a matrix representation for process models, which we denote as
order matrix. An order matrix captures (transitive) order relations between pairs
of activities, and can be considered as unique representation of a block-structured
process model. We compared the order matrix with process tree representations.
The obtained results indicate that the order matrix supports process changes
better and fosters the identification of process blocks. We further introduced the
notion of aggregated order matrix, which aggregates a number of order matrices,
in order to represent a collection of process models.

Based on order matrices we addressed the challenge to measure the efforts
for process configuration. For this purpose we introduced the concept of process
distance, which corresponds to the minimal number of high-level change oper-
ations needed for transforming one process model into another. In general, we
assume that the shorter the average distance between a reference process model
and related process variants is, the less changes are required for adapting the
variants and the less efforts are needed for process configuration. In this context,
we introduced a method based on boolean algebra optimization to compute the
distance between two process models.

Following this, we developed, evaluated and compared two algorithms for dis-
covering a reference process model from a collection of process variants. Adopting
the discovered model as new reference process model makes (future) process con-
figuration easier, since less efforts for configuring the variants are required.

163

CHAPTER 11. SUMMARY

Our clustering algorithm does not presume any knowledge of the original
reference process model out of which the process variants were configured. By
only looking at the process variant models, it can quickly discover a reference
process model in polynomial time, which allows us to scale up when solving real-
world problems. Our clustering algorithm can further provide information on
how well each part of the discovered reference model fits to the variants. Such
information can help to identify those regions where process configurations often
occur.

Our heuristic algorithm, in turn, can also take the original reference model
into account such that the user can control to what degree the discovered model
is different from the original one. This way, we can avoid spaghetti-like process
models and additionally control how many changes we want to perform on the
original reference model. Our algorithm can automatically determine which ac-
tivities shall be considered in the reference model. Filtering or pre-analysis of the
activity sets are not needed in this context. We evaluated our heuristic algorithm
by performing a comprehensive simulation. Based on the obtained simulation
results, we can draw the following conclusions:

1. The fitness function of our heuristic search algorithm is correlated with the
average weighted distance with high correlation value. This indicates good
performance of our algorithm since the approximation value we use to guide
the search is nicely correlated to the real one.

2. Performance of our heuristic algorithm can scale up. Its performance, which
is measured based on the correlation between fitness and distance, is inde-
pendent from the size of the models.

3. When discovering a new reference model by changing the original one, the
more important changes, which largely reduce average weighted distance
to the variants, are performed at the beginning. Our simulation results
indicate that the first 1/3 of the applied changes result in about 2/3 of
overall distance reduction.

Both the clustering and the heuristic algorithm have their advantages and
disadvantages. The clustering algorithm has polynomial complexity; i.e., it runs
significantly faster than the heuristic algorithm. In addition, our clustering al-
gorithm reflects how each part of the discovered reference process model fits to
the variants (using separation and cohesion). Our heuristic algorithm, in turn,
can only provide an overall evaluation (based on fitness). However, the cluster-
ing algorithm cannot control the discovery procedure or distinguish important
changes from less relevant ones as our heuristic algorithm does. As our simula-
tions revealed, process models discovered by the clustering algorithm were also
less optimal when compared to the ones discovered by the heuristic algorithm,
since the search space of the clustering algorithm is considerably smaller.

We further compared our algorithms with traditional process mining algo-
rithms. Based on a quantitative analysis, we showed that the reference model

164

discovered by our algorithm requires a lower number of change operations for con-
figuring the variants in comparison to the models we can discover when using tra-
ditional process mining algorithms. Though behavior aspects are not considered
in our algorithms, our comparison results imply that behavior of the discovered
model was not sacrificed that much. Though these results cannot be generalized,
they give a good motivation for integrating our algorithms with process mining
techniques.

We successfully applied the two algorithms to cases from the automotive and
the healthcare domain. During these studies, the practical relevance and benefit
of our work became evident. Regarding the automotive case, our clustering al-
gorithm discovered a reference process model which constitutes a good choice for
representing the top level change management process. Regarding the healthcare
case, our heuristic algorithm contributed to improve a clinical reference process
model by significantly reducing its average weighted distance to the variants. As
expected, it discovered important changes at the beginning of the search.

Though results look promising and are practically relevant, as always there is
room for future research work:

� First we have to include more control structures (like synchronization con-
straints for parallel activities as proposed in the ADEPT framework or in
WS-BPEL). Furthermore, we need to relax the constraint that labels are
unique. We can also cover more practical cases if we further relax the block-
structure constraint for process models. We believe that such extension can
be at least partly based on the concepts and techniques presented in this
thesis.

� Second, though our comparison results in Chapter 8 indicate good perfor-
mance of our algorithms in both structure and behavior aspect, it would
be useful to tighter integrate our algorithms with existing process mining
algorithms such that we can take structure as well as behavior perspective
simultaneously into account in order to cover more general cases [197].

� As learned from our case studies, data-flow and actor assignments also
constitute important parts of any process configuration. Therefore, it would
be advantageous to additionally consider these perspectives in our mining
approach so that it cannot only consider structural control flow changes, but
also include structural data flow changes [68] or changes of an organization
model [112] in process configurations as well.

� Finally, we believe that process variants mining also constitutes a challeng-
ing research topic in the field of data-driven processes (i.e., processes where
data and object changes drive the execution of the processes [90]). In this
context there exists work targeting at the product-based support of large
process structures and their coordination based on object models and relat-
ing object relations (see [123]). It would be interesting to analyze variants
in that context as well.

165

CHAPTER 11. SUMMARY

With the increasing adoption of Process-aware Information Systems, the op-
erational support for business processes has become an integral part of enterprise
computing [225]. In particular, businesses are more and more driven by process
models, which will result in the emergence of large process model repositories
[164].

The ability to manage model variants in such repositories will therefore be-
come an important issue for managing, maintaining and evolving process-aware
information systems [213]. The techniques provided in this thesis constitute a
good solution for managing and analyzing process variants, and therefore close a
gap in respect to full process lifecycle support in PAISs. In principle, if process
model variants can be transformed into a block-structured representation[135,
204, 84, 140], , our approaches become applicable for managing and analyzing
large variant collections.

In the context of this thesis, we assume process models to be block-structured.
On the one hand, block-structured models are easy to understand [151, 115, 116],
have less chances of containing errors [114, 116, 32], facilitate advanced analysis
[205, 59, 46], and are easy to change [211, 141]. These reasons explain an increas-
ing interest of researches for also transforming non-block-structured models into
block-structured ones [135, 204, 84, 140]. On the other hand, block-structured
models only support a fraction of the known workflow patterns [193], i.e., expres-
siveness remains an issue. For the future, we are expecting a balance to be made
between performance and expressiveness issues. In particular, future languages
and tools should support additional patterns, while ensuring good performance as
well as usability in the context of more advanced use cases like dynamic process
changes.

166

A
Appendix

A.1 Properties of Block-structured Process Model

Let S = (A,E, AT, ET, l) be a block-structured process model (cf. Def. 1).
Then: S has the following structural properties:

1. S has a unique start node; i.e.; ∃!s ∈ A : ∀(a1, a2) ∈ E : a2 6= s.
s is the only node with AT (s) = StartFlow.

2. S has a unique end node; i.e.; ∃!e ∈ A : ∀(a1, a2) ∈ E : a1 6= e.
e is the only node with AT (e) = EndFlow.

3. Let Atypes be defined as Atypes := {a ∈ A|AT (a) ∈ types}, Then:

� Each non-split node (excl. the end node) has exactly one outgoing
precedence edge:
∀a ∈ A \AAndSplit

⋃
XorSplit

⋃
EndFlow :

∃!e = (a1, a2) ∈ E with a1 = a ∧ ET (e) = Precedence.
� Each non-join node (excl. the start node) has exactly one incoming

precedence edge:
∀a ∈ A \AAndJoin

⋃
XorJoin

⋃
StartF low :

∃!e = (a1, a2) ∈ E with a2 = a ∧ ET (e) = Precedence.
� Any loop edge links a StartLoop node with an EndLoop node:
∀e = (a1, a2) ∈ E with ET (e) = Loop,
⇒ AT (a1) = StartLoop ∧AT (a2) = EndLoop.

4. S is block-structured –i.e., the following properties hold:

� Let Splits, Joins ⊂ A be defined as follows:
Splits := AAndSplit

⋃
XorSplit, Joins := AAndJoin

⋃
XorJoin.

Then: There exists a mapping join : Splits → Joins with:
– s ∈ Splits, ⇒ s ≺ join(s).
– join is a bijective mapping, i.e., join(s1) = join(s2) for s1, s2 ∈

Splits, ⇒
s1 = s2 ∧ ∀j ∈ Joins : ∃s ∈ Splits : join(s) = j.

– Let s ∈ Splits:
The subgraph induced by {s, join(s)} ⋃ {a ∈ A|s ≺ a ∧ a ≺

167

APPENDIX A. APPENDIX

join(s)} is a SESE, i.e., a subgraph with single entry and single
exit node.

– s ∈ Splits ∧ AT (s) = AndSplit(XorSplit),
⇒ AT (join(s)) = AndJoin(XorJoin).

� There exists a bijective mapping loop : AStartLoop → AEndLoop with:
– ls ∈ AStartLoop, ⇒ loop(ls) ≺ ls
– ls ∈ AStartLoop, ⇒ The subgraph induced by
{ls, loop(ls)} ⋃ {a ∈ A|loop(ls) ≺ a ∧ a ≺ ls} is a SESE.

� Blocks must not overlap, i.e., their nesting must be regular. Formally:
Bstarts ≡ Splits

⋃
AEndLoop; Bends ≡ Joins

⋃
AStartLoop.

Further, Let block be a mapping,block : Bstarts → Bends with block(s) =
join(s) if s ∈ Splits and block(s) = loop−1(s) if s ∈ AEndLoop. Then:
s1, s2 ∈ Bstarts with s1 ≺ s2 ≺ block(s1), ⇒ block(s2) ≺ block(s1).

In addition, we can define block as follows:
Let a1, a2 ∈ A with a1 ≺ a2 or a1 = a2. Let further join(a) be a bijective func-

tion to map each split/startLoop node a ∈ A with NT (a) ∈ {AndSplit,XorSplit,StartLoop}
to its corresponding joint/endLoop node a′ ∈ A with NT (a′) ∈ {AndJoin,XorJoin,EndLoop}.
Then: The subgraph of S induced by node set B = {a1, a2}

⋃{a ∈ A|a1 ≺ a∧a ≺
a2} constitutes a block iff:

� ∀a ∈ B with NT (a) ∈ {AndSplit,XorSplit,StartLoop}, ⇒ join(a) ∈ B
� ∀a ∈ B with NT (a) ∈ {AndJoin,XorJoin,EndLoop}, ⇒ join−1(a) ∈ B

Note that these definitions correspond to what we have informally described
in Section 2.1.1.

A.2 Proof of Theorem 1

In this appendix, we prove Theorem 1 (cf. Section 4.2). It states that we can
obtain a unique order matrix A based on a given process structure tree T =
(N,C, CT, E, l), i.e., for any two nodes ai, aj ∈ N , NCA(ai, aj) exists and is
unique. The proof consists of three steps:

1. Based on the properties of process structure tree (cf. Theorem 2), we first
prove that the indegree of any element in a process structure tree is less or
equal to 1 (cf. Theorem 3).

2. In the second step, we show that for any two connected nodes in a process
structure tree, there exists exactly one path linking them (cf. Lemma 1).

3. Finally, we prove that for any two different nodes in a process structure
tree, their nearest common ancestor exists and is unique (cf. Theorem 4).

We first discuss an important property of any process structure tree T =
(N,C, CT, E, l), namely that a subtree of T does not overlap with another dif-
ferent subtree of T . This property is described by Theorem 2. For a proof of
Theorem 2, we refer to [204].

168

A.2. PROOF OF THEOREM 1

Theorem 2 Let T = (N,C, CT, E, l) be a process structure tree and let T ′ =
(N ′, C ′, CT ′, E′, l ′) and T ′′ = (N ′′, C ′′, CT ′, E′′, l ′′) be two different subtrees of
T . Then: T ′ does not overlap with T ′′; i.e., either T ′ is a subtree of T ′′, or T ′′

is a subtree of T ′, or the following property holds ((N ′⋂ N ′′ = ∅) ∧ (C ′
⋂

C ′′ =
∅) ∧ (E′⋂ E′′ = ∅)).

Based on Theorem 2, we can obtain Theorem 3.

Theorem 3 The indegree in(e) of any element e ∈ N
⋃

C in a process structure
tree T = (N, C,CT, E, l) is less or equal 1.

Proof 2 Assume there exists an element e ∈ N
⋃

C which has more than one
predecessor; i.e., ∃n1, n2, . . . , ni ∈ N

⋃
C : (n1, e), (n2, e), . . . , (ni, e) ∈ E and

nx 6= ny for x, y ∈ {1, . . . , i}. Let T (nx) and T (ny) be two subtrees that result
when using nx and ny as their root elements (with x, y ∈ {1, . . . , i}, x 6= y) (cf.
Section 2.1.2). Then both T (nx) and T (ny) contain element e since (nx, e) ∈ E
and (ny, e) ∈ E. However, since nx 6= ny holds, T (nx) cannot be a subtree of
T (ny), and vice versa. Therefore, T (nx) and T (ny) overlap, which contradicts
to the property described in Theorem 2. Consequently, any element e ∈ N

⋃
C

maximally has one predecessor, i.e., in(e) ≤ 1; in(e) = 0 holds if e is the root of
T .

Based on Theorem 3, we can obtain Lemma 1.

Lemma 1 For two connected nodes a, b ∈ N
⋃

C in a process structure tree
T = (N, C, CT,E, l), there exists exactly one path connecting a with b.

Proof 3 Let a, b ∈ N
⋃

C be two elements of T . Assume that a and b are
connected with a ≺ b. Then there exists a sequence < n0, n1, . . . , ni > with
n0, . . . , ni ∈ N

⋃
C, n0 = a, ni = b and (nk−1, nk) ∈ E for k ∈ {1, . . . , i}.

According to Theorem 3, in(nk) ≤ 1 holds ⇒ The node which directly precedes
nk is unique and corresponds to nk−1. Since this applies to all k ∈ {1, . . . , i}, the
path < n0, . . . , ni > is unique.

Finally, Theorem 4 describes the existence and uniqueness of the nearest com-
mon ancestor for any two different nodes in a process structure tree.

Theorem 4 Taking two different nodes a, b ∈ N in a process structure tree T =
(N, C,CT, E, l), their nearest common ancestor NCA(a, b) exists and is unique.

Proof 4 Let a, b ∈ N be two different nodes and let further c ∈ C be the nearest
common ancestor of a and b. Since a and b are two different nodes, T contains
at minimum two nodes and one connector. Consequently, there must be a root
connector r ∈ E with r ≺ a and r ≺ b, since nodes constitute the leaves in the
tree and cannot be a predecessor of any other tree element.

169

APPENDIX A. APPENDIX

� Existence of c. Since each process structure tree has a unique root r, we
obtain r ≺ a and r ≺ b. According to Lemma 1, we can find two unique
paths < n0, n1, . . . , ni > with n0 = r and ni = a, and < n′0, n

′
1, . . . , n

′
j >

with n′0 = r and n′j = b respectively. Let min(i, j) denote the minimum of
i and j. Since r = n0 = n′0, there must be a k with 0 ≤ k ≤ min(i, j) such
that n0 = n′0, n1 = n′1, . . ., nk = n′k. According to Def. 7 we obtain nk as
NCA(a, b).

� Uniqueness of c. Assume that there is another connector c′ 6= c with c′ ∈ C,
which is a nearest common ancestor of a and b. According to Def. 7 we
obtain c ⊀ c′ and c′ ⊀ c. Let r be the unique root of process structure tree
T . Then we obtain r ≺ c and r ≺ c′. Since c′ is common ancestor of a and
b, we obtain c′ ≺ a and c′ ≺ b. Consequently, there are two different paths
from r to a: < r, . . . , c, . . . , a > and < r, . . . , c′, . . . , a >. This contradicts
to Lemma 1 ⇒ c′ cannot exist.

170

Bibliography

[1] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst.
Worklets: A service-oriented implementation of dynamic flexibility in workflows.
In CoopIS’06, pages 291–308. LNCS 4275, Springer, 2006.

[2] M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond.
Dynamic, extensible and context-aware exception handling for workflows. In
CoopIS’07, pages 95–112. LNCS 4803, Springer, 2007.

[3] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison Wesley, 2006.

[4] J.S. Ash, M. Berg, and E. Coiera. Some unintended consequences of information
technology in health care: the nature of patient care information system-related
errors. Journal of the American Medical Informatics Association, 11(2):104–112,
2004.

[5] A. Awad, G. Decker, and M. Weske. Efficient compliance checking using BPMN-Q
and temporal logic. In BPM’08, pages 326–341. LNCS 5240, Springer, 2008.

[6] A. Awad, M. Weidlich, and M. Weske. Specification, verification and explanation
of violation for data aware compliance rules. In ICSOC’09, pages 500–515. LNCS
5900, Springer, 2009.

[7] J. Bae, L. Liu, J. Caverlee, L.J. Zhang, and H. Bae. Development of distance
measures for process mining, discovery and integration. International Journal on
Web Service Research, 4(4):1–17, 2007.

[8] R. Baeza-Yates and B Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

[9] R.A. Baeza-Yates. Text retrieval: Theory and practice. In Proceedings of the IFIP
12th World Computer Congress on Algorithms, Software, Architecture - Informa-
tion Processing ’92, Volume 1, pages 465–476, Amsterdam, The Netherlands, The
Netherlands, 1992. North-Holland Publishing Co.

[10] C. Baier and J.P. Katoen. Principles of Model Checking. MIT Press, 2008.

[11] P. Balabko, A. Wegmann, A. Ruppen, and N. Clément. Capturing design rationale
with functional decomposition of roles in business processes modeling. Software
Process: Improvement and Practice, 10(4):379–392, 2005.

[12] P. Bille. A survey on tree edit distance and related problems. Theoretical Com-
puter Science, 337(1-3):217–239, 2005.

[13] M. Blaha and J. Rumbaugh. Object-oriented modeling and design with UML-
Second Edition. Prentice Hall, 1991.

[14] H.M. Blanken, A.P. de Vries, H.E. Blok, and L. Feng. Multimedia Retrieval.
Springer, 2007.

171

BIBLIOGRAPHY

[15] R. Bobrik, M. Reichert, and T. Bauer. View-based process visualization. In
BPM’07, pages 88–95. LNCS 4714, Springer, 2007.

[16] L. Bodenstaff, A. Wombacher, M. Reichert, and M.C. Jaeger. Monitoring depen-
dencies for SLAs: The MoDe4SLA approach. In SCC’08, pages 21–29, 2008.

[17] L. Bodenstaff, A. Wombacher, M. Reichert, and M.C. Jaeger. Analyzing impact
factors on composite services. In SCC’09, pages 218–226, 2009.

[18] S.P. Borgatti. Identifying sets of key players in a social network. Computational
& Mathematical Organization Theory, 12(1):21–34, 2006.

[19] R.P. Jagadeesh Chandra Bose and W.M.P. van der Aalst. Context aware trace
clustering: Towards improving process mining results. In SDM’09, pages 401–412.
SIAM, 2009.

[20] A.W. Bowman, M.C. Jones, and I. Gijbels. Test monotonicity of regression.
Journal of Computational and Graphical Statistics, 7(4):489–500, 1998.

[21] BPEL. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

[22] OMG BPMI.org. Business Process Modeling Notation 2.0 Beta 2. Object Man-
agement Group, 2010. available at: http://www.bpmn.org.

[23] S. Brown and Z. Vranesic. Fundamentals of Digital Logic with Verilog Design.
McGraw-Hill, 2003.

[24] S. Buchwald, T. Bauer, and M. Reichert. Durchgängige Modellierung von
Geschäftsprozessen in einer Service-orientierten Architektur. In Modellierung’10,
pages 203–211. LNI 161, GI, 2010.

[25] D.S. Callaway, M.E.J. Newman, S.H. Strogatz, and D.J. Watts. Network ro-
bustness and fragility: Percolation on random graphs. Physical Review Letter,
85(25):5468–5471, 2000.

[26] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villan. An approach for QoS-
aware service composition based on genetic algorithms. In GECCO ’05, pages
1069–1075. ACM, 2005.

[27] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. Data & Knowl-
edge Engineering, 24(3):211–238, 1998.

[28] F. Casati, S. Ilnicki, LJ Jin, V. Krishnamoorthy, and M.C. Shan. Adaptive and
dynamic service composition in eFlow. In CAiSE’00, pages 13–31. LNCS 1789,
Springer, 2000.

[29] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algo-
rithms. ACM Computing Surveys, 38(1):2, 2006.

[30] K.M. Chandy and L. Lamport. Distributed snapshots: determining global states
of distributed systems. ACM Transactions on Computer Systems, 3(1):63–75,
1985.

172

BIBLIOGRAPHY

[31] K.M. Chandy and L. Lamport. Distributed snapshots: determining global states
of distributed systems. ACM Transactions Computer Systems, 3(1):63–75, 1985.

[32] C. Combi and M. Gambini. Flaws in the flow: The weakness of unstructured
business process modeling languages dealing with data. In OTM Conferences (1),
pages 42–59. LNCS 5870, Springer, 2009.

[33] J.E. Cook and A.L. Wolf. Automating process discovery through event-data anal-
ysis. In ICSE ’95, pages 73–82. ACM, 1995.

[34] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-
rithms, Second Edition. The MIT Press and McGraw-Hill Book Company, 2001.

[35] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
for finite transition systems. IEEE Trans. Computers, 47(8):859–882, 1998.

[36] O. Coudert. Doing two-level logic minimization 100 times faster. In SODA ’95,
pages 112–121. Society for Industrial and Applied Mathematics, 1995.

[37] P. Dadam and M. Reichert. The ADEPT project: A decade of research and
development for robust and flexible process support - challenges and achievements.
Computer Science - Research and Development, 23(2):81–97, 2009.

[38] T.H. Davenport. Mission Critical - Realizing the Promise of Enterprise Systems.
Harvard Business School, 2000.

[39] A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven Univer-
sity of Technology, NL, 2006.

[40] J. Dehnert and R. Rittgen. Relaxed soundness of business processes. In CAiSE
’01, pages 157–170, London, UK, 2001. LNCS 2068, Springer.

[41] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair queueing
algorithm. In SIGCOMM ’89, pages 1–12. ACM, 1989.

[42] I.S. Dhillon. Co-clustering documents and words using bipartite spectral graph
partitioning. In KDD ’01, pages 269–274, New York, NY, USA, 2001. ACM.

[43] R.M. Dijkman, M. Dumas, and L. Garćıa-Bañuelos. Graph matching algorithms
for business process model similarity search. In BPM’09, pages 48–63. LNCS 5701,
Springer, 2009.

[44] R.M. Dijkman, M. Dumas, L. Garcia-Banuelos, and R. Kaarik. Aligning business
process models. In EDOC’09, pages 45–53, 2009.

[45] E.W. Dijkstra. Notes on structured programming. pages 1–82, 1972.

[46] R. Eshuis and P.W.P.J. Grefen. Structural matching of BPEL processes. In
ECOWS’07, pages 171–180. IEEE Computer Society, 2007.

[47] B. D. Estrade, L. A. Perkins, and J. M. Harris. Explicitly parallel regular expres-
sions. In IMSCCS’06, pages 402–409. IEEE Computer Society, 2006.

173

BIBLIOGRAPHY

[48] D.R. Ferreira and D. Gillblad. Discovering process models from unlabelled event
logs. In BPM’09, pages 143–158. LNCS 5701, Springer, 2009.

[49] D.R. Ferreira, M. Zacarias, M. Malheiros, and P. Ferreira. Approaching process
mining with sequence clustering: Experiments and findings. In BPM’07, pages
360–374. LNCS 4714, Springer, 2007.

[50] H.M. Ferreira and D.R. Ferreira. An integrated life cycle for workflow management
based on learning and planning. International Journal on Cooperative Information
Systems, 15(4):485–505, 2006.

[51] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Compatibility verification for web
service choreography. In ICWS’04, pages 738–741. IEEE Computer Society, 2004.

[52] A. Ghose and G. Koliadis. Auditing business process compliance. In ICSOC’07,
pages 169–180. LNCS 4749, Springer, 2007.

[53] J. Gordijn, H. Weigand, M. Reichert, and R. Wieringa. Towards self-configuration
and management of e-service provisioning in dynamic value constellations. In
SAC’08, pages 566–571. ACM, 2008.

[54] F. Gottschalk. Configurable Process Models. PhD thesis, Eindhoven University of
Technology, The Netherlands, December 2009.

[55] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa.
Configurable workflow models. International Journal on Cooperative Information
Systems, 17(2):177–221, 2008.

[56] F. Gottschalk, T.A.C. Wagemakers, M.H. Jansen-Vullers, W.M.P. van der Aalst,
and M. La Rosa. Configurable process models: Experiences from a municipality
case study. In CAiSE’09, pages 486–500. LNCS 5565, Springer, 2009.

[57] G. Greco, A. Guzzo, and L. Pontieri. Mining hierarchies of models: From abstract
views to concrete specifications. In BPM’05, pages 32–47. LNCS 3649, Springer,
2005.

[58] D. Grigori, F. Casati, U. Dayal, and M. Shan. Improving business process quality
through exception understanding, prediction, and prevention. In VLDB ’01, pages
159–168, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[59] T. Gschwind, J. Koehler, and J. Wong. Applying patterns during business process
modeling. In BPM’08, pages 4–19. LNCS 5240, Springer, 2008.

[60] C. Günther. Process Mining in Flexible Environments. PhD thesis, Technical
University of Eindhoven, 2009.

[61] C.W. Günther, S. Rinderle, M. Reichert, and W.M.P. van der Aalst. Change
mining in adaptive process management systems. In CoopIS’06, pages 309–326,
2006.

[62] C.W. Günther, S. Rinderle-Ma, M. Reichert, W.M.P. van der Aalst, and J. Recker.
Using process mining to learn from process changes in evolutionary systems. Int’l
Journal of Business Process Integration and Management, 3(1):61–78, 2008.

174

BIBLIOGRAPHY

[63] C.W. Günther, A. Rozinat, and W.M.P. van der Aalst. Activity mining by global
trace segmentation. In BPI’09, pages 128–139. LNBIP 43, 2009.

[64] C.W. Günther and W.M.P. van der Aalst. A generic import framework for process
event logs. In BPI’06, pages 81–92. LNCS 4103, Springer, 2006.

[65] A. Hallerbach, T. Bauer, and M. Reichert. Context-based configuration of process
variants. In TCoB’08, pages 31–40, 2008.

[66] A. Hallerbach, T. Bauer, and M. Reichert. Managing process variants in the
process lifecycle. In ICEIS ’08, pages 154–161. Springer, 2008.

[67] A. Hallerbach, T. Bauer, and M. Reichert. Guaranteeing soundness of configurable
process variants in provop. In CEC’09, pages 98–105, 2009.

[68] A. Hallerbach, T. Bauer, and M. Reichert. Capturing variability in business
process models: the Provop approach. Journal of Software Maintenance and
Evolution: Research and Practice, 22(6-7):519–546, 2010.

[69] G. Halmans and K. Kohl. Communicating the variability of a software product
family to customers. Software and Systems Modeling, 2(1):15–36, 2003.

[70] D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

[71] H.J. Harrington. Business Process Improvement: The Breakthrough Strategy for
Total Quality, Productivity, and Competitiveness. McGraw-Hill, 1991.

[72] H. Hermanns, J.P. Katoen, J. Meyer-Kayser, and M. Siegle. A tool for model-
checking markov chains. International Journal on Software Tools for Technology
Transfer, 4(2):153–172, 2003.

[73] J. Hidders, M. Dumas, W.M.P. van der Aalst, A.H.M. ter Hofstede, and J. Verelst.
When are two workflows the same? In CATS ’05:, pages 3–11, Darlinghurst,
Australia, 2005.

[74] S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri Nets. In BPM’05,
pages 220–235. LNCS 3649, Springer, 2005.

[75] L.B. Holder, D.J. Cook, and S. Djoko. Substructure discovery in the subdue
system. In In Proc. of the AAAI Workshop on Knowledge Discovery in Databases,
pages 169–180, 1994.

[76] C.P. Holland and B. Light. A critical success factors model for ERP implementa-
tion. IEEE Software, 16(3):30–36, 1999.

[77] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison Wesley, 2007.

[78] J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: mining maximal frequent sub-
graphs from graph databases. In KDD ’04, pages 581–586, New York, NY, USA,
2004. ACM.

175

BIBLIOGRAPHY

[79] M.H. Jansen-Vullers, W.M.P. van der Aalst, and M. Rosemann. Mining config-
urable enterprise information systems. Data Knowl. Eng., 56(3):195–244, 2006.

[80] T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an alternative to tree edit.
In CPM ’94, pages 75–86. Springer-Verlag, 1994.

[81] T. Jones and S. Forrest. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In 6th International Conference on Genetic Al-
gorithms, pages 184–192, USA, 1995. Morgan Kaufmann.

[82] G. Karypis, EH. Han, and V. Kumar. Chameleon: Hierarchical clustering using
dynamic modeling. Computer, 32(8):68–75, 1999.

[83] A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring
service level agreements for web services. J. Network and System Management,
11(1):57–81, 2003.

[84] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On structured workflow
modelling. In CAiSE’00, pages 431–445. LNCS 1789, Springer, 2000.

[85] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[86] J. Köbler, U. Schöning, and J. Torán. The graph isomorphism problem: its struc-
tural complexity. Birkhauser Verlag, 1993.

[87] M. Kradolfer and A. Geppert. Dynamic workflow schema evolution based on
workflow type versioning and workflow migration. In CoopIS ’99, pages 104 –
114, Washington, DC, USA, 1999. IEEE Computer Society.

[88] P. Kruchten. The Rational Unified Process: An Introduction, Second Edition.
Addison-Wesley, 2000.

[89] R.L. Kruse and A.J. Ryba. Data Structures And Programming Design in C++.
Prentice Hall, 1999.

[90] V. Künzle and M. Reichert. Integrating users in object-aware process management
systems: Issues and challenges. In BPMDS’09, pages 29–41. LNBIP 43, Springer,
2009.

[91] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM’01, pages
313–320. IEEE Computer Society, 2001.

[92] J.M. Küster, C. Gerth, A. Förster, and G. Engels. Detecting and resolving process
model differences in the absence of a change log. In BPM’08, pages 244–260. LNCS
5240, Springer, 2008.

[93] W. Labio and H. Garcia-Molina. Efficient snapshot differential algorithms for data
warehousing. In VLDB ’96, pages 63–74, San Francisco, CA, USA, 1996.

[94] A. Lanz, U. Kreher, M. Reichert, and P. Dadam. Enabling process support for
advanced applications with the AristaFlow BPM Suite. In BPM’10 Demonstration
Track. CEUR Workshop Proceedings, Vol. 615, 2010.

176

BIBLIOGRAPHY

[95] A.M. Law. Simulation modeling and analysis. McGraw-Hill Higher Education,
2006.

[96] R. Lenz and M. Reichert. IT support for healthcare processes - premises, chal-
lenges, perspectives. Data Knowledge Engineering, 61(1):39–58, 2007.

[97] V. Jorge Leon and R. Balakrishnan. Strength and adaptability of problem-space
based neighborhoods for resource-constrained scheduling. OR Spectrum, 17(1-
3):173–182, 1995.

[98] C. Li, M. Reichert, and A. Wombacher. Discovering reference process models by
mining process variants. In ICWS’08, pages 45–53. IEEE Computer Society, 2008.

[99] C. Li, M. Reichert, and A. Wombacher. Mining process variants: Goals and issues.
In IEEE SCC (2), pages 573–576. IEEE Computer Society, 2008.

[100] C. Li, M. Reichert, and A. Wombacher. On measuring process model similarity
based on high-level change operations. In ER ’08, pages 248–262. LNCS 5231,
Springer, 2008.

[101] C. Li, M. Reichert, and A. Wombacher. Discovering reference models by mining
process variants using a heuristic approach. In BPM’09, LNCS 5701, pages 344–
362. Springer, 2009.

[102] C. Li, M. Reichert, and A. Wombacher. A heuristic approach for discovering
reference models by mining process model variants. Technical Report TR-CTIT-
09-08, University of Twente, The Netherlands, March 2009.

[103] C. Li, M. Reichert, and A. Wombacher. Representing block-structured process
models as order matrices: Basic concepts, formal properties, algorithms. Technical
Report TR-CTIT-09-47, University of Twente, The Netherlands, 2009.

[104] C. Li, M. Reichert, and A. Wombacher. What are the problem makers: Ranking
activities according to their relevance for process changes. In ICWS’09, pages
51–58. IEEE Computer Society, 2009.

[105] C. Li, M. Reichert, and A. Wombacher. MinAdept - the clustering approach
for discovering reference models out of process variants. International Journal of
Cooperative Information Systems, 19(3), 2010.

[106] C. Li, J.M. van den Akker, S. Brinkkemper, and G. Diepen. An integrated ap-
proach for requirement selection and scheduling in software release planning. Re-
quirements Engineering Journal, to appear.

[107] R. Lu, S. Sadiq, and G. Governatori. On managing business processes variants.
Data Knowledge Engineering, 68(7):642–664, 2009.

[108] R. Lu and S. W. Sadiq. On the discovery of preferred work practice through
business process variants. In ER, pages 165–180. Springer, 2007.

[109] R. Lu, S.W. Sadiq, V. Padmanabhan, and G. Governatori. Using a temporal
constraint network for business process execution. In ADC’06, pages 157–166.
Australian Computer Society, 2006.

177

BIBLIOGRAPHY

[110] G. F. Luger. Artificial Intelligence: Structures and Strategies for Complex Problem
Solving. Pearson Education, 2005.

[111] J.C.S. Lui and M.F. Chan. An efficient partitioning algorithm for distributed vir-
tual environment systems. IEEE Transactions on Parallel & Distributed Systems,
13(3):193–211, 2002.

[112] L. Thao Ly, S. Rinderle, P. Dadam, and M. Reichert. Mining staff assignment
rules from event-based data. In BPI’05, pages 177–190. LNCS 3812, Springer,
2005.

[113] J. Mendling. Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction and Guidelines for Correctness, volume 6 of LNBIP. Springer,
2008.

[114] J. Mendling, G. Neumann, and W.M.P. van der Aalst. Understanding the occur-
rence of errors in process models based on metrics. In CoopIS’07, LNCS 4803,
pages 113–130, 2007.

[115] J. Mendling, H.A. Reijers, and J. Cardoso. What makes process models under-
standable? In BPM’07, pages 48–63. LNCS 4714, Springer, 2007.

[116] J. Mendling, H.A. Reijers, and W.M.P. van der Aalst. Seven process modeling
guidelines (7pmg). Information & Software Technology, 52(2):127–136, 2010.

[117] J. Mendling, B.F. van Dongen, and W.M.P. van der Aalst. Getting rid of or-joins
and multiple start events in business process models. Enterprise Information
Systems, 2(4):403–419, 2008.

[118] N. Milanovic and M. Malek. Current solutions for web service composition. IEEE
Internet Computing, 8(6):51–59, 2004.

[119] M. Minor, A. Tartakovski, and D. Schmalenand R. Bergmann. Agile workflow
technology and case-based change reuse for long-term processes. International
Journal of Intelligent Information Technologies, 4(1):80–98, 2008.

[120] A. Mishchenko, B. Steinbach, and M. Perkowski. An algorithm for bi-
decomposition of logic functions. In DAC ’01, pages 103–108. ACM, 2001.

[121] J. Moody. Race, school integration, and friendship segregation in america. Amer-
ican Journal Of Sociology, 107(3):679–716, 2001.

[122] D. Müller, J. Herbst, M. Hammori, and M. Reichert. IT support for release
management processes in the automotive industry. In BPM’06, pages 368–377.
LNCS 4102, Springer, 2006.

[123] D. Müller, M. Reichert, and J. Herbst. A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In CAiSE’08, pages 48–63.
LNCS 5074, Springer, 2008.

[124] R. Müller, U. Greiner, and E. Rahm. AGENT WORK: a workflow system support-
ing rule-based workflow adaptation. Data Knowledge Engineering, 51(2):223–256,
2004.

178

BIBLIOGRAPHY

[125] N. A. Mulyar. Patterns for process-aware information systems:an approach based
on colored Petri nets. PhD thesis, Technische Universiteit Eindhoven, 2009.

[126] T. Murata. Petri Nets: Properties, analysis and applications. IEEE, 77(4):541–
580, 1989.

[127] B. Mutschler, J. Bumiller, and M. Reichert. Why process-orientation is scarce:
An empirical study of process-oriented information systems in the automotive
industry. In EDOC’06, pages 433–440. IEEE Computer Society, 2006.

[128] B. Mutschler, M. Reichert, and J. Bumiller. Unleashing the effectiveness of
process-oriented information systems: Problem analysis, critical success factors
and implications. IEEE Transactions on Systems, Man, and Cybernetics (Part
C), 38(3):280–291, 2008.

[129] B. Mutschler, B. Weber, and M. Reichert. Workflow management versus case
handling: results from a controlled software experiment. In SAC’08, pages 82–89.
ACM, 2008.

[130] M.P. Papazoglou and W.J. Heuvel. Service oriented architectures: approaches,
technologies and research issues. The VLDB Journal, 16(3):389–415, 2007.

[131] D.L. Parnas. Software aging. In ICSE ’94, pages 279–287. IEEE Computer Society
Press, 1994.

[132] C. Peltz. Web services orchestration and choreography. Computer, 36:46–52, 2003.

[133] M. Pesic, M.H. Schonenberg, N. Sidorova, and W.M.P. van der Aalst. Constraint-
based workflow models: Change made easy. In CoopIS’07, pages 77–94. LNCS
4803, Springer, 2007.

[134] S.S. Pinter and M. Golani. Discovering workflow models from activities’ lifespans.
Comput. Ind., 53(3):283–296, 2004.

[135] A. Polyvyanyy, L. Garćıa-Bañuelos, and M. Dumas. Structuring acyclic process
models. In BPM’09, pages 276–293. LNCS 6336, Springer, 2010.

[136] Y. QI and H.N. Koutsopoulos. A microscopic traffic simulator for evaluation of
dynamic traffic management systems. Transportation Research, 4(3):113 – 129,
1996.

[137] S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, and S. Panzarasa. Flexi-
ble guideline-based patient careflow systems. Artificial Intelligence in Medicine,
22(1):65–80, 2001.

[138] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Pub-
lishers Inc., USA, 1993.

[139] J. Rao and X. Su. A survey of automated web service composition methods. In
SWSWPC’04, pages 43–54. LNCS 3387, Springer, 2004.

[140] M. Reichert. Dynamische Ablaufänderungen in Workflow-Management-Systemen.
PhD thesis, Ulm University, Germany, 2000.

179

BIBLIOGRAPHY

[141] M. Reichert and P. Dadam. ADEPTflex - supporting dynamic changes of work-
flows without losing control. Journal of Intelligent Information Systems, 10(2):93–
129, 1998.

[142] M. Reichert, P. Dadam, and T. Bauer. Dealing with forward and backward jumps
in workflow management systems. Software and System Modeling, 2(1):37–58,
2003.

[143] M. Reichert, P. Dadam, U. Kreher, M. Jurisch, and K. Göser. Architectural
design of flexible process management technology. In PRIMIUM Subconference at
the Multikonferenz Wirtschaftsinformatik (MKWI). CEUR Workshop Proceedings
328, 2008.

[144] M. Reichert, P. Dadam, S. Rinderle-Ma, M. Jurisch, U. Kreher, and K. Göser.
Architectural principles and components of adaptive process management tech-
nology. In PRIMIUM’09, pages 81–97. LNI P-151, 2009.

[145] M. Reichert, P. Dadam, S. Rinderle-Ma, A. Lanz, R. Pryss, M. Predeschly,
J. Kolb, L.T. Ly, M. Jurisch, U. Kreher, and K. Goeser. Enabling Poka-Yoke
workflows with the AristaFlow BPM Suite. In BPM’09 Demonstration Track.
CEUR Workshop Proceedings, Vol. 489, 2009.

[146] M. Reichert and S. Rinderle. On design principles for realizing adaptive service
flows with BPEL. In EMISA’06, pages 133–146. LNI 95, Koellen, 2006.

[147] M. Reichert, S. Rinderle, and P. Dadam. On the common support of workflow
type and instance changes under correctness constraints. In CoopIS’03, pages
407–425. LNCS 2888, Springer, 2003.

[148] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management
with ADEPT2. In ICDE ’05, pages 1113–1114. IEEE Computer Society, 2005.

[149] M. Reichert, S. Rinderle-Ma, and P. Dadam. Flexibility in process-aware informa-
tion systems. LNCS Transactions Petri Nets and Other Models of Concurrency,
2:115–135, 2009.

[150] H.A. Reijers and W.M.P. Aalst. The effectiveness of workflow management sys-
tems: predictions and lessons learned. Int’l Journal of Information Management,
25(5):457–471, 2005.

[151] H.A. Reijers and J. Mendling. Modularity in process models: Review and effects.
In BPM’08, pages 20–35. LNCS 5240, Springer, 2008.

[152] S. Rinderle. Schema Evolution in Process Management Systems. PhD thesis, Ulm
University, Germany, 2004.

[153] S. Rinderle, M. Jurisch, and M. Reichert. On deriving net change information
from change logs - the DELTALAYER-algorithm. In BTW’07, pages 364–381,
2007.

[154] S. Rinderle, M. Reichert, and P. Dadam. Correctness criteria for dynamic changes
in workflow systems – a survey. Data and Knowledge Engineering, 50(1):9–34,
2004.

180

BIBLIOGRAPHY

[155] S. Rinderle, M. Reichert, and P. Dadam. Flexible support of team processes
by adaptive workflow systems. Distributed and Parallel Databases, 16(1):91–116,
2004.

[156] S. Rinderle, M. Reichert, and P. Dadam. On dealing with structural conflicts
between process type and instance changes. In BPM’04, pages 274–289. LNCS
3080, Springer, 2004.

[157] S. Rinderle, M. Reichert, M. Jurisch, and U. Kreher. On representing, purging,
and utilizing change logs in process management systems. In BPM’06, pages
241–256. LNCS 4102, Springer, 2006.

[158] S. Rinderle, B. Weber, M. Reichert, and W. Wild. Integrating process learning
and process evolution - a semantics based approach. In BPM’05, LNCS 3649,
pages 252–267, 2006.

[159] S. Rinderle, A. Wombacher, and M. Reichert. Evolution of process choreographies
in DYCHOR. In CoopIS’06, pages 273–290. LNCS 4275, Springer, 2006.

[160] S. Rinderle-Ma, M. Reichert, and B. Weber. On the formal semantics of change
patterns in process-aware information systems. In ER’08, LNCS 5231, pages 279–
293, 2008.

[161] L. Rising and J.S. Norman. The scrum software development process for small
teams. IEEE Software, 17(4):26–32, 2000.

[162] M. La Rosa. Managing Variability in Process-Aware Information Systems. PhD
thesis, Queensland University of Technology, Australia, April 2009.

[163] M. La Rosa, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede.
Questionnaire-based variability modeling for system configuration. Software and
System Modeling, 8(2):251–274, 2009.

[164] M. Rosemann. Potential pitfalls of process modeling: Part B. Business Process
Management Journal, 12(3):127–136, 2006.

[165] M. Rosemann and W.M.P. van der Aalst. A configurable reference modelling
language. Information Systems, 32(1):1–23, 2007.

[166] K.H. Rosen. Discrete Mathematics and Its Application. McGraw-Hill, 2003.

[167] R. J. Rowley. Marine reserves in fisheries management. Aquatic Conservation:
Marine and Freshwater Ecosystems, 4(3):233–254, 2006.

[168] A. Rozinat and W.M.P. van der Aalst. Conformance checking of processes based
on monitoring real behavior. Information Systems, 33(1):64–95, 2008.

[169] R. Sabherwal and Y.E. Chan. Alignment between business and is strategies: A
study of prospectors, analyzers, and defenders. Information Systems Research,
12(1):11–33, 2001.

[170] E. Sadoulet and A. de Janvry. Quantitative Development Policy Analysis. The
Johns Hopkins University Press, 1995.

181

BIBLIOGRAPHY

[171] A.W. Scheer. ARIS - Business Process Modeling. Springer, 2000.

[172] G. Schimm. Process miner - a tool for mining process schemes from event-based
data. In JELIA ’02, pages 525–528. LNCS 2424, Springer, 2002.

[173] K. Schwaber and M. Beedle. Agile Software Development with Scrum. Prentice
Hall, 2001.

[174] D.J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures.
CRC Press, 2004.

[175] K. Sivashanmugam, J.A. Miller, A.P. Sheth, and K. Verma. Framework for se-
mantic web process composition. International Journal of Electronic Commerce,
9(2):71–106, 04-5.

[176] S.F. Smith. A learning system based on genetic adaptive algorithms. PhD thesis,
University of Pittsburgh, USA, 1980.

[177] M. Song, C. W. Günther, and W. M. P. van der Aalst. Trace clustering in process
mining. In BPI’08, pages 109–120. LNBIP 17, Springer, 2008.

[178] P. Spiessens and B. Manderick. Finding optimal representations using the
crossover correlation coefficient. In SBIA ’96, pages 91–100. LNCS 1159, Springer,
1996.

[179] SPSS. http://www.spss.com/.

[180] KC. Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, 1979.

[181] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison-
Wesley, 2005.

[182] L. Thom, M. Reichert, and C. Iochpe. Activity patterns in process-aware infor-
mation systems: Basic concepts and empirical evidence. International Journal of
Business Process Integration and Management, 4(2):93–110, 2009.

[183] W. M. P. van der Aalst, M. Dumas, F. Gottschalk, A. H. M. ter Hofstede, M. La
Rosa, and J. Mendling. Preserving correctness during business process model
configuration. Formal Aspects of Computing, 22(3-4):459–482, 2010.

[184] W. M. P. van der Aalst, N. Lohmann, M. La Rosa, and J. Xu. Correctness ensuring
process configuration: An approach based on partner synthesis. In BPM’10, pages
95–111. LNCS 6336, Springer, 2010.

[185] W.M.P. van der Aalst. The application of Petri Nets to workflow management.
Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[186] W.M.P. van der Aalst. Business alignment: using process mining as a tool for delta
analysis and conformance testing. Requirement Engineering Journal, 10(3):198–
211, 2005.

[187] W.M.P. van der Aalst and T. Basten. Inheritance of workflows: an approach to
tackling problems related to change. Theoretical Computer Science, 270(1-2):125–
203, 2002.

182

BIBLIOGRAPHY

[188] W.M.P. van der Aalst, A.K.A. de Medeiros, and A.J.M.M. Weijters. Process equiv-
alence: Comparing two process models based on observed behavior. In BPM’06,
pages 129–144. LNCS 4102, Springer, 2006.

[189] W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - Research & De-
velopment, 23(2):99–113, 2009.

[190] W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering social networks
from event logs. Comput. Supported Coop. Work, 14(6):549–593, 2005.

[191] W.M.P. van der Aalst and T.Basten. Identifying commonalities and differences
in object life cycles using behavioral inheritance. In ICATPN ’01, pages 32–52.
Springer, 2001.

[192] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: yet another workflow
language. Information Systems, 30(4):245–275, 2005.

[193] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[194] W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske. Business process
management: A survey. In BPM’03, pages 1–12. LNCS 2678, Springer, 2003.

[195] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow mining: a survey of issues and approaches. Data
Knowl. Eng., 47(2):237–267, 2003.

[196] W.M.P. van der Aalst and K. van Hee. Workflow Management: Models, Methods,
and Systems. The MIT Press, 2002.

[197] W.M.P van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discov-
ering process models from event logs. IEEE Trans. on Knowl. and Data Eng.,
16(9):1128–1142, 2004.

[198] W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case handling: a new
paradigm for business process support. Data Knowledge Engineering, 53(2):129–
162, 2005.

[199] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik.
Process discovery using integer linear programming. In Petri Nets, pages 368–
387. LNCS 5062, Springer, 2008.

[200] B. F. van Dongen and W.M.P. van der Aalst. Multi-phase process mining: Build-
ing instance graphs. In ER’04, pages 362–376. LNCS 3288, Springer, 2004.

[201] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, and
W.M.P. van der Aalst. The ProM framework: A new era in process mining tool
support. In ICATPN’05, pages 444–454. LNCS 3536, Springer, 2005.

[202] B.F. van Dongen, R. M. Dijkman, and J. Mendling. Measuring similarity between
business process models. In CAiSE’08, pages 450–464. LNCS 5074, Springer, 2008.

183

BIBLIOGRAPHY

[203] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of ACM, 43(3):555–600, 1996.

[204] J. Vanhatalo, H. Völzer, and J. Koehler. The refined process structure tree. Data
Knowledge Engineering, 68(9):793–818, 2009.

[205] J. Vanhatalo, H. Völzer, and F. Leymann. Faster and more focused control-flow
analysis for business process models through sese decomposition. In ICSOC’07,
pages 43–55. LNCS 4749, Springer, 2007.

[206] G. M. Veiga and D. R. Ferreira. Understanding spaghetti models with sequence
clustering for prom. In BPI’09, pages 92–103. LNBIP 43, 2010, 2009.

[207] G. Vossen and M. Weske. The WASA2 object-oriented workflow management
system. In SIGMOD’99, pages 587–589, 1999.

[208] R.A. Wagner and M.J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, 1974.

[209] B. Weber, B. Mutschler, and M. Reichert. Investigating the effort of using business
process management technology: Results from a controlled experiment. Science
of Computer Programming, 75(5):292–310, 2010.

[210] B. Weber and M. Reichert. Refactoring process models in large process reposito-
ries. In CAiSE’08, pages 124–139. LNCS 5074, Springer, 2008.

[211] B. Weber, M. Reichert, and S. Rinderle-Ma. Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and
Knowledge Engineering, 66(3):438–466, 2008.

[212] B. Weber, M. Reichert, W. Wild, and S. Rinderle. Balancing flexibility and
security in adaptive process management systems. In CooplS ’05, pages 59–76,
2005.

[213] B. Weber, M. Reichert, W. Wild, and S. Rinderle-Ma. Providing integrated life
cycle support in process-aware information systems. International Journal of
Cooperative Information Systems, 19(1):115–165, 2009.

[214] B. Weber, H.A. Reijers, S. Zugal, and W. Wild. The declarative approach to
business process execution: An empirical test. In CAiSE’09, pages 470–485. LNCS
5565, Springer, 2009.

[215] B. Weber, S. Rinderle, and M. Reichert. Change patterns and change support
features in process-aware information systems. In CAiSE’07, pages 574–588, 2007.

[216] B. Weber, S. Rinderle, W. Wild, and M. Reichert. CCBR-driven business process
evolution. In ICCBR’05, pages 610–624. LNCS 3620, Springer, 2005.

[217] B. Weber, S. Sadiq, and M. Reichert. Beyond rigidity - dynamic process lifecycle
support: A survey on dynamic changes in process-aware information systems.
Computer Science - R&D, 23(2):47–65, 2009.

184

BIBLIOGRAPHY

[218] B. Weber, W. Wild, M. Lauer, and M. Reichert. Improving exception handling
by discovering change dependencies in adaptive process management systems. In
BPM’06 Workshops, pages 93–104. LNCS 4103, Springer, 2006.

[219] M. Weidlich and M. Weske. Structural and behavioural commonalities of process
variants. In ZEUS’10, pages 41–48. CEUR Workshop Proceedings 563, 2010.

[220] M. Weidlich, Ma. Weske, and J. Mendling. Change propagation in process models
using behavioural profiles. In SCC’09, pages 33–40. IEEE, 2009.

[221] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering workflow models
from event-based data using little thumb. Integr. Comput.-Aided Eng., 10(2):151–
162, 2003.

[222] L. Wen, J. Wang, and J. Sun. Detecting implicit dependencies between tasks from
event logs. In APWeb’06, pages 591–603, 2006.

[223] M. Weske. Workflow management systems: Formal foundation, conceptual de-
sign, implementation aspects. Habilitationsschrift Fachbereich Mathematik und
Informatik, Universität Münster, 2000.

[224] M. Weske. Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In HICSS ’01, page 7051, Washington, DC, 2001.

[225] M. Weske. Business Process Management. Springer, 2007.

[226] R.J. Wieringa and J.M.G. Heerkens. The methodological soundness of require-
ments engineering papers: a conceptual framework and two case studies. Require-
ment Engineering, 11(4):295–307, 2006.

[227] R.J. Wieringa, N.A.M. Maiden, N.R. Mead, and C. Rolland. Requirements engi-
neering paper classification and evaluation criteria: a proposal and a discussion.
Requirement Engineering, 11(1):102–107, 2005.

[228] I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann Publishers Inc., USA, 2005.

[229] A. Wombacher. Alignment of choreography changes in BPEL processes. In
SCC’09, pages 1–8. IEEE Computer Society, 2009.

[230] A. Wombacher, P. Fankhauser, and E. Neuhold. Transforming BPEL into an-
notated deterministic finite state automata for service discovery. Web Services,
IEEE International Conference on, 0:316, 2004.

[231] A. Wombacher and M. Rozie. Evaluation of workflow similarity measures in service
discovery. Service Oriented Electronic Commerce, pages 51–71, 2006.

[232] WS-CDL. http://www.w3.org/tr/ws-cdl-10/.

[233] WSDL. http://www.w3.org/tr/wsdl.

[234] XML. http://www.w3.org/tr/rec-xml/.

185

BIBLIOGRAPHY

[235] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In
ICDM’02, pages 721–724. IEEE Computer Society, 2002.

[236] M. zur Muehlen and J. Recker. How much language is enough? theoretical and
practical use of the business process modeling notation. In CAiSE’08, pages 465–
479. LNCS 5074, Springer, 2008.

[237] M. zur Muehlen and M. Rosemann. Workflow-based process monitoring and con-
trolling - technical and organizational issues. In HICSS ’00, page 6032, Washing-
ton, DC, USA, 2000. IEEE Computer Society.

186

SIKS Dissertatiereeks
====
1998
====

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

====
1999
====

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent Mechanism for Discrete Reallocation.

====
2000
====

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

====
2001
====

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes

2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice

BRAHMS: a multiagent modeling and simulation language
for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models in Business Systems Design

====
2002
====

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology;
Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

====
2003
====

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

====
2004
====

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

====
2005

====

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by
Exploiting Application Semantics

====
2006
====

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines

2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards a Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

====
2007
====

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy:
a Legislative Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support:
A Rational Approach to Dynamic Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in Institutions and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on residential adoption and
usage of broadband internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramrez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

====
2008
====

2008-01 Katalin Boer-Sorbn (EUR)
Agent-Based Simulation of Financial Markets: A modular,continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware information systems from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation and Algorithms for the
Markov Decision Process Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)
Adaptive Active Vision

2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and Performance of Focused Text Search

2008-20 Rex Arendsen (UVA)
Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie
van elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)

Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users, and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Observable Markov Decision Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

====
2009
====

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks - Based on Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
perating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)

From ontology-enabled services to service-enabled ontologies
(making ontologies work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
”RAM: Array Database Management through Relational Mapping”

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflection on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Architects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management: An Incremental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)

Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata ecology for learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

====
2009
====

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink (UT)
Work flows in Life Science

2010-03 Joost Geurts (CWI)
A Document Engineering Model and Processing Framework for Multimedia documents

2010-04 Olga Kulyk (UT)
Do You Know What I Know? Situational Awareness of Co-located Teams in Multidisplay Environments

2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries and Retrieval Systems

2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)
Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory Framework of Free Software. Protecting user freedoms
in a world of software communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children 2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How Improv Informs Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos(CWI)
Database Cracking: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT)
Accessing Natural History - Discoveries in data cleaning, structuring, and retrieval

2010-31 Victor de Boer (UVA)
Ontology Enrichment from Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture: Automatically solving Interoperability Problems

2010-33 Robin Aly (UT)
Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based Biomedical Information Retrieval

2010-36 Jose Janssen (OU)
Paving the Way for Lifelong Learning;
Facilitating competence development through a learning path specification

2010-37 Niels Lohmann (TUE)
Correctness of services and their composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU)
Converting and Integrating Vocabularies for the Semantic Web

2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search

2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a multi-supplier setting - the computational e3-service approach

2010-43 Peter van Kranenburg (UU)
A Computational Approach to Content-Based Retrieval of Folk Song Melodies

2010-44 Pieter Bellekens (TUE)
An Approach towards Context-sensitive and User-adapted Access to
Heterogeneous Data Sources, Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants: Challenges, Techniques, Examples

	thesis front cover.pdf
	thesisChen_final.pdf
	thesis back cover.pdf

